ta đặt A=10a+b
B=3a+2b
có 2A-B=2(10a+b)-(3a+2b)
2A-B=(20a+2b)-(3a+2b)
2A-B=17a chia hết cho 17
vì A chia hết cho 17 nên 2A chia hết cho 17
mà 2A-B chia hết cho 17 nên B chia hết cho 17
chứng minh 1a+b chia hết cho 17 thì 3a+2b chia hết cho 17
xin lỗi dòng cuối mình viết là 10a+b chứ ko phải 1a+b
Câu trả lời hay nhất: + ta chứng minh a,b,c có ít nhất một số chia hết cho 3
giả sử cả 3 số trên đều không chia hết cho 3
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1)
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn
Vậy có ít nhất 1 số chia hết cho 3
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn
vậy có ít nhất 1 số cgia hết cho 4
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5)
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3
=> phải có ít nhất 1 số chia hết cho 5
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60
ta có 10a+b chia hết cho 17
===>10a chia hết 17==> a chia hết cho 17 và b chia hết 17
====> 3a + 2b chia hêt 17 (MÌNH CŨNG KHÔNG BIẾT ĐÚNG HAY SAI ĐỪNG NÉM ĐÁ NHÉ)