Đặt B1 = a1.
B2 = a1 + a2 .
B3 = a1 + a2 + a3 ...................................
B10 = a1 + a2 + ... + a10 .
Nếu tồn tại Bi ﴾ i= 1,2,3...10﴿.
nào đó chia hết cho 10 thì bài toán được chứng minh.
Nếu không tồn tại Bi nào chia hết cho 10 ta làm như sau: Ta đen Bi chia cho 10 sẽ được 10 số dư ﴾ các số dư ∈ { 1,2.3...9}﴿.
Theo nguyên tắc Di‐ric‐ lê, phải có ít nhất 2 số dư bằng nhau. Các số Bm ‐Bn, chia hết cho 10 ﴾ m>n﴿ ⇒ ĐPCM.
Đặt B1 = a1.
B2 = a1 + a2 .
B3 = a1 + a2 + a3 ...................................
B10 = a1 + a2 + ... + a10 .
Nếu tồn tại Bi ﴾ i= 1,2,3...10﴿.
nào đó chia hết cho 10 thì bài toán được chứng minh.
Nếu không tồn tại Bi nào chia hết cho 10 ta làm như sau: Ta đen Bi chia cho 10 sẽ được 10 số dư ﴾ các số dư ∈ { 1,2.3...9}﴿.
Theo nguyên tắc Di‐ric‐ lê, phải có ít nhất 2 số dư bằng nhau. Các số Bm ‐Bn, chia hết cho 10 ﴾ m>n﴿ ⇒ ĐPCM.
Đặt B1 = a1.
B2 = a1 + a2 .
B3 = a1 + a2 + a3 ...................................
B10 = a1 + a2 + ... + a10 .
Nếu tồn tại Bi ﴾ i= 1,2,3...10﴿.
nào đó chia hết cho 10 thì bài toán được chứng minh.
Nếu không tồn tại Bi nào chia hết cho 10 ta làm như sau: Ta đen Bi chia cho 10 sẽ được 10 số dư ﴾ các số dư ∈ { 1,2.3...9}﴿.
Theo nguyên tắc Di‐ric‐ lê, phải có ít nhất 2 số dư bằng nhau. Các số Bm ‐Bn, chia hết cho 10 ﴾ m>n﴿ ⇒ ĐPCM.
Đặt B1 = a1.
B2 = a1 + a2 .
B3 = a1 + a2 + a3 ...................................
B10 = a1 + a2 + ... + a10 .
Nếu tồn tại Bi ﴾ i= 1,2,3...10﴿.
nào đó chia hết cho 10 thì bài toán được chứng minh.
Nếu không tồn tại Bi nào chia hết cho 10 ta làm như sau: Ta đen Bi chia cho 10 sẽ được 10 số dư ﴾ các số dư ∈ { 1,2.3...9}﴿.
Theo nguyên tắc Di‐ric‐ lê, phải có ít nhất 2 số dư bằng nhau. Các số Bm ‐Bn, chia hết cho 10 ﴾ m>n﴿ ⇒ ĐPCM.
Đặt B1 = a1.
B2 = a1 + a2 .
B3 = a1 + a2 + a3 ...................................
B10 = a1 + a2 + ... + a10 .
Nếu tồn tại Bi ﴾ i= 1,2,3...10﴿.
nào đó chia hết cho 10 thì bài toán được chứng minh.
Nếu không tồn tại Bi nào chia hết cho 10 ta làm như sau: Ta đen Bi chia cho 10 sẽ được 10 số dư ﴾ các số dư ∈ { 1,2.3...9}﴿.
Theo nguyên tắc Di‐ric‐ lê, phải có ít nhất 2 số dư bằng nhau. Các số Bm ‐Bn, chia hết cho 10 ﴾ m>n﴿ ⇒ ĐPCM.
Đặt B1 = a1.
B2 = a1 + a2 .
B3 = a1 + a2 + a3 ...................................
B10 = a1 + a2 + ... + a10 .
Nếu tồn tại Bi ﴾ i= 1,2,3...10﴿.
nào đó chia hết cho 10 thì bài toán được chứng minh.
Nếu không tồn tại Bi nào chia hết cho 10 ta làm như sau: Ta đen Bi chia cho 10 sẽ được 10 số dư ﴾ các số dư ∈ { 1,2.3...9}﴿.
Theo nguyên tắc Di‐ric‐ lê, phải có ít nhất 2 số dư bằng nhau. Các số Bm ‐Bn, chia hết cho 10 ﴾ m>n﴿ ⇒ ĐPCM
Đặt B1 = a1.
B2 = a1 + a2 .
B3 = a1 + a2 + a3 ...................................
B10 = a1 + a2 + ... + a10 .
Nếu tồn tại Bi ﴾ i= 1,2,3...10﴿.
nào đó chia hết cho 10 thì bài toán được chứng minh.
Nếu không tồn tại Bi nào chia hết cho 10 ta làm như sau: Ta đen Bi chia cho 10 sẽ được 10 số dư ﴾ các số dư ∈ { 1,2.3...9}﴿.
Theo nguyên tắc Di‐ric‐ lê, phải có ít nhất 2 số dư bằng nhau. Các số Bm ‐Bn, chia hết cho 10 ﴾ m>n﴿ ⇒ ĐPCM.
Đặt B1 = a1.
B2 = a1 + a2 .
B3 = a1 + a2 + a3 ...................................
B10 = a1 + a2 + ... + a10 .
Nếu tồn tại Bi ﴾ i= 1,2,3...10﴿.
nào đó chia hết cho 10 thì bài toán được chứng minh.
Nếu không tồn tại Bi nào chia hết cho 10 ta làm như sau: Ta đen Bi chia cho 10 sẽ được 10 số dư ﴾ các số dư ∈ { 1,2.3...9}﴿.
Theo nguyên tắc Di‐ric‐ lê, phải có ít nhất 2 số dư bằng nhau. Các số Bm ‐Bn, chia hết cho 10 ﴾ m>n﴿ ⇒ ĐPCM.
Đặt B1 = a1.
B2 = a1 + a2 .
B3 = a1 + a2 + a3 ...................................
B10 = a1 + a2 + ... + a10 .
Nếu tồn tại Bi ﴾ i= 1,2,3...10﴿.
nào đó chia hết cho 10 thì bài toán được chứng minh.
Nếu không tồn tại Bi nào chia hết cho 10 ta làm như sau: Ta đen Bi chia cho 10 sẽ được 10 số dư ﴾ các số dư ∈ { 1,2.3...9}﴿.
Theo nguyên tắc Di‐ric‐ lê, phải có ít nhất 2 số dư bằng nhau. Các số Bm ‐Bn, chia hết cho 10 ﴾ m>n﴿ ⇒ ĐPCM
Đặt B1 = a1.
B2 = a1 + a2 .
B3 = a1 + a2 + a3 ...................................
B10 = a1 + a2 + ... + a10 .
Nếu tồn tại Bi ﴾ i= 1,2,3...10﴿.
nào đó chia hết cho 10 thì bài toán được chứng minh.
Nếu không tồn tại Bi nào chia hết cho 10 ta làm như sau: Ta đen Bi chia cho 10 sẽ được 10 số dư ﴾ các số dư ∈ { 1,2.3...9}﴿.
Theo nguyên tắc Di‐ric‐ lê, phải có ít nhất 2 số dư bằng nhau. Các số Bm ‐Bn, chia hết cho 10 ﴾ m>n﴿ ⇒ ĐPCM.
Đặt B1 = a1.
B2 = a1 + a2 .
B3 = a1 + a2 + a3 ...................................
B10 = a1 + a2 + ... + a10 .
Nếu tồn tại Bi ﴾ i= 1,2,3...10﴿.
nào đó chia hết cho 10 thì bài toán được chứng minh.
Nếu không tồn tại Bi nào chia hết cho 10 ta làm như sau: Ta đen Bi chia cho 10 sẽ được 10 số dư ﴾ các số dư ∈ { 1,2.3...9}﴿.
Theo nguyên tắc Di‐ric‐ lê, phải có ít nhất 2 số dư bằng nhau. Các số Bm ‐Bn, chia hết cho 10 ﴾ m>n﴿ ⇒ ĐPCM.
Đặt B1 = a1.
B2 = a1 + a2 .
B3 = a1 + a2 + a3 ...................................
B10 = a1 + a2 + ... + a10 .
Nếu tồn tại Bi ﴾ i= 1,2,3...10﴿.
nào đó chia hết cho 10 thì bài toán được chứng minh.
Nếu không tồn tại Bi nào chia hết cho 10 ta làm như sau: Ta đen Bi chia cho 10 sẽ được 10 số dư ﴾ các số dư ∈ { 1,2.3...9}﴿.
Theo nguyên tắc Di‐ric‐ lê, phải có ít nhất 2 số dư bằng nhau. Các số Bm ‐Bn, chia hết cho 10 ﴾ m>n﴿ ⇒ ĐPCM
Đặt B1 = a1.
B2 = a1 + a2 .
B3 = a1 + a2 + a3 ...................................
B10 = a1 + a2 + ... + a10 .
Nếu tồn tại Bi ﴾ i= 1,2,3...10﴿.
nào đó chia hết cho 10 thì bài toán được chứng minh.
Nếu không tồn tại Bi nào chia hết cho 10 ta làm như sau: Ta đen Bi chia cho 10 sẽ được 10 số dư ﴾ các số dư ∈ { 1,2.3...9}﴿.
Theo nguyên tắc Di‐ric‐ lê, phải có ít nhất 2 số dư bằng nhau. Các số Bm ‐Bn, chia hết cho 10 ﴾ m>n﴿ ⇒ ĐPCM.
Đặt B1 = a1.
B2 = a1 + a2 .
B3 = a1 + a2 + a3 ...................................
B10 = a1 + a2 + ... + a10 .
Nếu tồn tại Bi ﴾ i= 1,2,3...10﴿.
nào đó chia hết cho 10 thì bài toán được chứng minh.
Nếu không tồn tại Bi nào chia hết cho 10 ta làm như sau: Ta đen Bi chia cho 10 sẽ được 10 số dư ﴾ các số dư ∈ { 1,2.3...9}﴿.
Theo nguyên tắc Di‐ric‐ lê, phải có ít nhất 2 số dư bằng nhau. Các số Bm ‐Bn, chia hết cho 10 ﴾ m>n﴿ ⇒ ĐPCM.
dat B1 = a1
B2=a1+a2
B3=a1+a2+a3...............................................
B10=a1+a2+...+a10
Neu ton tai Bi ( i = 1,2,3,...,10 )
nao do chia het cho 10 thi bai toan duoc chung minh
neu khong ton tai Bi nao chia het cho 10 ta lam nhu sau : ta dem Bi chia cho 10 se duoc 10 so du ( cac so E { 1,2,3,...,9 })
Theo nguyen tac Di-ric-le , phai co it nhat 2 so du bang nhau . Cac so Bm -Bn , chia het cho 10 ( m>n )=>DPCM