Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
WWE world heavyweight ch...

Cho 10 số tự nhiên bất kỳ.  Chứng minh rằng thế nào cũng có một số hoặc tổng một số các số liên tiếp nhau trong dãy trên chia hết cho 10

ST
2 tháng 4 2016 lúc 15:37

Đặt B1 = a1.

B2 = a1 + a2 .

B3 = a1 + a2 + a3 ...................................

B10 = a1 + a2 + ... + a10 .

Nếu tồn tại Bi ﴾ i= 1,2,3...10﴿.

nào đó chia hết cho 10 thì bài toán được chứng minh.

Nếu không tồn tại Bi nào chia hết cho 10 ta làm như sau: Ta đen Bi chia cho 10 sẽ được 10 số dư ﴾ các số dư ∈ { 1,2.3...9}﴿.

Theo nguyên tắc Di‐ric‐ lê, phải có ít nhất 2 số dư bằng nhau. Các số Bm ‐Bn, chia hết cho 10 ﴾ m>n﴿ ⇒ ĐPCM. 

QuocDat
2 tháng 4 2016 lúc 15:38

Đặt B1 = a1.

B2 = a1 + a2 .

B3 = a1 + a2 + a3 ...................................

B10 = a1 + a2 + ... + a10 .

Nếu tồn tại Bi ﴾ i= 1,2,3...10﴿.

nào đó chia hết cho 10 thì bài toán được chứng minh.

Nếu không tồn tại Bi nào chia hết cho 10 ta làm như sau: Ta đen Bi chia cho 10 sẽ được 10 số dư ﴾ các số dư ∈ { 1,2.3...9}﴿.

Theo nguyên tắc Di‐ric‐ lê, phải có ít nhất 2 số dư bằng nhau. Các số Bm ‐Bn, chia hết cho 10 ﴾ m>n﴿ ⇒ ĐPCM. 

QuocDat
2 tháng 4 2016 lúc 15:39

Đặt B1 = a1.

B2 = a1 + a2 .

B3 = a1 + a2 + a3 ...................................

B10 = a1 + a2 + ... + a10 .

Nếu tồn tại Bi ﴾ i= 1,2,3...10﴿.

nào đó chia hết cho 10 thì bài toán được chứng minh.

Nếu không tồn tại Bi nào chia hết cho 10 ta làm như sau: Ta đen Bi chia cho 10 sẽ được 10 số dư ﴾ các số dư ∈ { 1,2.3...9}﴿.

Theo nguyên tắc Di‐ric‐ lê, phải có ít nhất 2 số dư bằng nhau. Các số Bm ‐Bn, chia hết cho 10 ﴾ m>n﴿ ⇒ ĐPCM. 

ST
2 tháng 4 2016 lúc 15:40

Đặt B1 = a1.

B2 = a1 + a2 .

B3 = a1 + a2 + a3 ...................................

B10 = a1 + a2 + ... + a10 .

Nếu tồn tại Bi ﴾ i= 1,2,3...10﴿.

nào đó chia hết cho 10 thì bài toán được chứng minh.

Nếu không tồn tại Bi nào chia hết cho 10 ta làm như sau: Ta đen Bi chia cho 10 sẽ được 10 số dư ﴾ các số dư ∈ { 1,2.3...9}﴿.

Theo nguyên tắc Di‐ric‐ lê, phải có ít nhất 2 số dư bằng nhau. Các số Bm ‐Bn, chia hết cho 10 ﴾ m>n﴿ ⇒ ĐPCM. 

SKT_ Lạnh _ Lùng
2 tháng 4 2016 lúc 15:40

Đặt B1 = a1.

B2 = a1 + a2 .

B3 = a1 + a2 + a3 ...................................

B10 = a1 + a2 + ... + a10 .

Nếu tồn tại Bi ﴾ i= 1,2,3...10﴿.

nào đó chia hết cho 10 thì bài toán được chứng minh.

Nếu không tồn tại Bi nào chia hết cho 10 ta làm như sau: Ta đen Bi chia cho 10 sẽ được 10 số dư ﴾ các số dư ∈ { 1,2.3...9}﴿.

Theo nguyên tắc Di‐ric‐ lê, phải có ít nhất 2 số dư bằng nhau. Các số Bm ‐Bn, chia hết cho 10 ﴾ m>n﴿ ⇒ ĐPCM. 

ST
2 tháng 4 2016 lúc 15:41

Đặt B1 = a1.

B2 = a1 + a2 .

B3 = a1 + a2 + a3 ...................................

B10 = a1 + a2 + ... + a10 .

Nếu tồn tại Bi ﴾ i= 1,2,3...10﴿.

nào đó chia hết cho 10 thì bài toán được chứng minh.

Nếu không tồn tại Bi nào chia hết cho 10 ta làm như sau: Ta đen Bi chia cho 10 sẽ được 10 số dư ﴾ các số dư ∈ { 1,2.3...9}﴿.

Theo nguyên tắc Di‐ric‐ lê, phải có ít nhất 2 số dư bằng nhau. Các số Bm ‐Bn, chia hết cho 10 ﴾ m>n﴿ ⇒ ĐPCM

QuocDat
2 tháng 4 2016 lúc 15:42

Đặt B1 = a1.

B2 = a1 + a2 .

B3 = a1 + a2 + a3 ...................................

B10 = a1 + a2 + ... + a10 .

Nếu tồn tại Bi ﴾ i= 1,2,3...10﴿.

nào đó chia hết cho 10 thì bài toán được chứng minh.

Nếu không tồn tại Bi nào chia hết cho 10 ta làm như sau: Ta đen Bi chia cho 10 sẽ được 10 số dư ﴾ các số dư ∈ { 1,2.3...9}﴿.

Theo nguyên tắc Di‐ric‐ lê, phải có ít nhất 2 số dư bằng nhau. Các số Bm ‐Bn, chia hết cho 10 ﴾ m>n﴿ ⇒ ĐPCM. 

QuocDat
2 tháng 4 2016 lúc 15:42

Đặt B1 = a1.

B2 = a1 + a2 .

B3 = a1 + a2 + a3 ...................................

B10 = a1 + a2 + ... + a10 .

Nếu tồn tại Bi ﴾ i= 1,2,3...10﴿.

nào đó chia hết cho 10 thì bài toán được chứng minh.

Nếu không tồn tại Bi nào chia hết cho 10 ta làm như sau: Ta đen Bi chia cho 10 sẽ được 10 số dư ﴾ các số dư ∈ { 1,2.3...9}﴿.

Theo nguyên tắc Di‐ric‐ lê, phải có ít nhất 2 số dư bằng nhau. Các số Bm ‐Bn, chia hết cho 10 ﴾ m>n﴿ ⇒ ĐPCM. 

ST
2 tháng 4 2016 lúc 15:43

Đặt B1 = a1.

B2 = a1 + a2 .

B3 = a1 + a2 + a3 ...................................

B10 = a1 + a2 + ... + a10 .

Nếu tồn tại Bi ﴾ i= 1,2,3...10﴿.

nào đó chia hết cho 10 thì bài toán được chứng minh.

Nếu không tồn tại Bi nào chia hết cho 10 ta làm như sau: Ta đen Bi chia cho 10 sẽ được 10 số dư ﴾ các số dư ∈ { 1,2.3...9}﴿.

Theo nguyên tắc Di‐ric‐ lê, phải có ít nhất 2 số dư bằng nhau. Các số Bm ‐Bn, chia hết cho 10 ﴾ m>n﴿ ⇒ ĐPCM

QuocDat
2 tháng 4 2016 lúc 15:44

Đặt B1 = a1.

B2 = a1 + a2 .

B3 = a1 + a2 + a3 ...................................

B10 = a1 + a2 + ... + a10 .

Nếu tồn tại Bi ﴾ i= 1,2,3...10﴿.

nào đó chia hết cho 10 thì bài toán được chứng minh.

Nếu không tồn tại Bi nào chia hết cho 10 ta làm như sau: Ta đen Bi chia cho 10 sẽ được 10 số dư ﴾ các số dư ∈ { 1,2.3...9}﴿.

Theo nguyên tắc Di‐ric‐ lê, phải có ít nhất 2 số dư bằng nhau. Các số Bm ‐Bn, chia hết cho 10 ﴾ m>n﴿ ⇒ ĐPCM. 

QuocDat
2 tháng 4 2016 lúc 15:44

Đặt B1 = a1.

B2 = a1 + a2 .

B3 = a1 + a2 + a3 ...................................

B10 = a1 + a2 + ... + a10 .

Nếu tồn tại Bi ﴾ i= 1,2,3...10﴿.

nào đó chia hết cho 10 thì bài toán được chứng minh.

Nếu không tồn tại Bi nào chia hết cho 10 ta làm như sau: Ta đen Bi chia cho 10 sẽ được 10 số dư ﴾ các số dư ∈ { 1,2.3...9}﴿.

Theo nguyên tắc Di‐ric‐ lê, phải có ít nhất 2 số dư bằng nhau. Các số Bm ‐Bn, chia hết cho 10 ﴾ m>n﴿ ⇒ ĐPCM. 

ST
2 tháng 4 2016 lúc 15:46

Đặt B1 = a1.

B2 = a1 + a2 .

B3 = a1 + a2 + a3 ...................................

B10 = a1 + a2 + ... + a10 .

Nếu tồn tại Bi ﴾ i= 1,2,3...10﴿.

nào đó chia hết cho 10 thì bài toán được chứng minh.

Nếu không tồn tại Bi nào chia hết cho 10 ta làm như sau: Ta đen Bi chia cho 10 sẽ được 10 số dư ﴾ các số dư ∈ { 1,2.3...9}﴿.

Theo nguyên tắc Di‐ric‐ lê, phải có ít nhất 2 số dư bằng nhau. Các số Bm ‐Bn, chia hết cho 10 ﴾ m>n﴿ ⇒ ĐPCM

QuocDat
2 tháng 4 2016 lúc 15:49

Đặt B1 = a1.

B2 = a1 + a2 .

B3 = a1 + a2 + a3 ...................................

B10 = a1 + a2 + ... + a10 .

Nếu tồn tại Bi ﴾ i= 1,2,3...10﴿.

nào đó chia hết cho 10 thì bài toán được chứng minh.

Nếu không tồn tại Bi nào chia hết cho 10 ta làm như sau: Ta đen Bi chia cho 10 sẽ được 10 số dư ﴾ các số dư ∈ { 1,2.3...9}﴿.

Theo nguyên tắc Di‐ric‐ lê, phải có ít nhất 2 số dư bằng nhau. Các số Bm ‐Bn, chia hết cho 10 ﴾ m>n﴿ ⇒ ĐPCM. 

QuocDat
2 tháng 4 2016 lúc 15:49

Đặt B1 = a1.

B2 = a1 + a2 .

B3 = a1 + a2 + a3 ...................................

B10 = a1 + a2 + ... + a10 .

Nếu tồn tại Bi ﴾ i= 1,2,3...10﴿.

nào đó chia hết cho 10 thì bài toán được chứng minh.

Nếu không tồn tại Bi nào chia hết cho 10 ta làm như sau: Ta đen Bi chia cho 10 sẽ được 10 số dư ﴾ các số dư ∈ { 1,2.3...9}﴿.

Theo nguyên tắc Di‐ric‐ lê, phải có ít nhất 2 số dư bằng nhau. Các số Bm ‐Bn, chia hết cho 10 ﴾ m>n﴿ ⇒ ĐPCM. 

Đừng có tưởng ta đây dễ...
2 tháng 4 2016 lúc 15:57

dat B1 = a1

B2=a1+a2

B3=a1+a2+a3...............................................

B10=a1+a2+...+a10

Neu ton tai Bi ( i = 1,2,3,...,10 )

nao do chia het cho 10 thi bai toan duoc chung minh

neu khong ton tai Bi nao chia het cho 10 ta lam nhu sau : ta dem Bi chia cho 10 se duoc 10 so du ( cac so E { 1,2,3,...,9 })

Theo nguyen tac Di-ric-le , phai co it nhat 2 so du bang nhau . Cac so Bm -Bn , chia het cho 10 ( m>n )=>DPCM


Các câu hỏi tương tự
Nguyễn Minh Hiển
Xem chi tiết
Nguyễn Như Quỳnh
Xem chi tiết
NguyễnnThị Phương Anh
Xem chi tiết
Trần Nguyễn Tùng Dương
Xem chi tiết
Nhók Con
Xem chi tiết
Công Chúa Nụ Cười
Xem chi tiết
Hirari Hirari
Xem chi tiết
Trần Anh
Xem chi tiết
Đức Thuận Nguyễn
Xem chi tiết