V, h nó mới được như cũ, để t vt lại cho dễ nhìn
gọi a,b là 2 độ dài của hình chữ nhật
ta có BĐT cần chứng minh
<=>\(2\left(a+b\right)\ge\frac{32ab}{2ab+2\left(a+b\right)+2}\Leftrightarrow a+b\ge\frac{8ab}{ab+\left(a+b\right)+1}\)
<=>\(ab\left(a+b\right)+\left(a+b\right)^2+a+b\ge8ab\)
<=>\(\left(ab+1\right)\left(a+b\right)+\left(a+b\right)^2\ge8ab\)
ta luôn có \(\left(a+b\right)^2\ge4ab\)
mà \(a+b\ge2\sqrt{ab};ab+1\ge2\sqrt{ab}\) =>\(\left(a+b\right)\left(ab+1\right)\ge4ab\)
+ vào thì ta sẽ ra đpcm
^_^
:V, OLM bị lỗi, t vt như vầy cố dịch nhé !
Ta có BĐT <=>2(a+b)>=32ab/[2ab+2(a+b)+2]
<=>a+b>=8ab/ab+a+b+1
quy đồng, rồi, ta có
(a+b)^2+(ab+1)(a+b)>=8ab
Áp dụng bđt cô-si, ta chứng minh được (a+b)^2 >=4ab
mà (ab+1)>=2.căn(ab); a+b>=2.căn(ab)
nhân vào, ta có (ab+1)(a+b)>=4ab
+ thêm cái kia, ta có BĐT cần phải chứng minh (ĐPCM)
^_^