Cho \(x,y\)là hai số dương có tổng bằng 1. Chứng minh rằng \(\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\ge9\).
Cho \(x+y>1\). Chứng minh rằng \(x^4+y^4>\frac{1}{8}\).
Cho \(a,b,c\) là ba số dương có tích bằng 1. Chứng minh rằng
\(\frac{ab}{a^5+b^5+ab}+\frac{bc}{b^5+c^5+bc}+\frac{ca}{c^5+a^5+ca}\le1\).
Cho ba số dương \(a,b,c\) thỏa mãn điều kiện \(a+b+c+ab+bc+ca=6abc\) . Chứng minh rằng
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge3\).
Chứng minh rằng với mọi bộ ba số khác 0 tùy ý \(a,b,c\) luôn có \(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\).
Cho ba số \(x,y,z\) thỏa mãn điều kiện \(z\ge y\ge x\ge0\). Chứng minh rẳng
\(x\left(x-y\right)\left(x-z\right)+y\left(y-z\right)\left(y-x\right)+z\left(z-x\right)\left(z-y\right)\ge0\)
Cho a, b là hai số thực tùy ý. Chứng minh rằng:
1) \(a^2-ab+b^2\ge0\). Dấu đẳng thức xảy ra khi nào?
2) \(a^2-ab+b^2\ge\frac{1}{4}\left(a+b\right)^2\). Khi nào xảy ra đẳng thức?
Chứng minh rằng \(x^8-x^7+x^2-x+1>0,\forall x\).
Chứng minh rằng với mọi số thực \(x\), luôn có \(4x^8-2x^7+x^6-3x^4+x^2-x+1>0\).