Ta có: \(\sqrt[3]{x^2\left(2-2x\right)}\le\frac{x+x+2-2x}{3}=\frac{2}{3}.\)
\(\Rightarrow x^2\left(2-2x\right)\le\frac{8}{27}\Leftrightarrow-x^3+x^2\le\frac{4}{27}\)
Dấu "=" xảy ra khi: \(x=2-2x\Leftrightarrow x=\frac{2}{3}\)
Bạn xem lại đề nha
Ta có: \(\sqrt[3]{x^2\left(2-2x\right)}\le\frac{x+x+2-2x}{3}=\frac{2}{3}.\)
\(\Rightarrow x^2\left(2-2x\right)\le\frac{8}{27}\Leftrightarrow-x^3+x^2\le\frac{4}{27}\)
Dấu "=" xảy ra khi: \(x=2-2x\Leftrightarrow x=\frac{2}{3}\)
Bạn xem lại đề nha
Cho \(0\le x\le1\) CMR \(-x^3+x^2\le\frac{1}{4}\)
Cho \(0\le y\le x\le1\). CMR: \(x\sqrt{y}-y\sqrt{x}\le\frac{1}{4}\)
Các bạn ơi giúp với
Cho 0\(\le x\le y\le z\le1\)
CMR: \(\frac{1}{1+x^2}+\frac{1}{1+y^2}+\frac{1}{1+z^2}\le\frac{3}{1+xyz}\)
Cho \(0\le y\le x\le1\) Cmr:
\(x\sqrt{y}-y\sqrt{x}\le\frac{1}{4}\)
a)Cho các số x,y,z \(\ge\)1.CMR: \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{3}{1+\sqrt[3]{xyz}}\).
b) Cho x,y,z \(\ge\)0 và x\(\le1;y\le1;z\le1\)chứng minh:
\(\frac{1}{1+x^2}+\frac{1}{1+y^2}+\frac{1}{1+z^2}\le\frac{3}{1+xyz}\)
c)Cho a + b\(\ge\)2.CMR: \(a^3+b^3\le a^4+b^4\)
d)Cho a2+b2\(\ge\frac{1}{4}.CMR:a^4+b^4\ge\frac{1}{32}\)
Cho \(0\le x;y\le1\). Chứng minh: \(\frac{x+y}{2}\le\frac{x}{\sqrt{y+3}}+\frac{y}{\sqrt{x+3}}\le1\)
\(0\le x\le1\) Cm
\(-x^3+x^2\le\frac{1}{4}\)
Cho \(0\le x\le y\le1\) và 2x+y=2. CMR: \(2x^2+y^2\le\frac{3}{2}\)
\(0\le x,y,z\le1\\ CMR\\ \frac{x}{yz+1}+\frac{y}{xz+1}+\frac{z}{xy+1}\le2\)