Do 0< a < b < c < d < m < n
=> a + c + m < b + d + n
=> 2 ( a + c + m ) < a + b + c + d + m + n
\(\Rightarrow\frac{2\left(a+c+m\right)}{a+b+c+d+m+n}< 1\Rightarrow\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\)
Do 0< a < b < c < d < m < n
=> a + c + m < b + d + n
=> 2 ( a + c + m ) < a + b + c + d + m + n
\(\Rightarrow\frac{2\left(a+c+m\right)}{a+b+c+d+m+n}< 1\Rightarrow\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\)
cho 6 số nguyên dương a,b,c,d,m,n thỏa mãn:
a<b<c<d<m<n
chứng minh rằng \(\dfrac{a+c+m}{a+b+c+d+m+n}< \dfrac{1}{2}\)
Câu 1:Cho các số hữu tỉ x =a/b; y = c/d ; z = m/n. Biết ad-bc = 1; cn - dm = 1 ; b,d,n > 0
a) Hãy so sánh các số x,y,z
b) So sánh y với t biết t = a+m /b+n với b+n khác 0
Câu 2: Cho 6 số nguyên dương a<b<c<d<m<n
Chứng minh rằng a+c+m / a+b+c+d+m+n < 1/2.
Bài 1
a) Cho ba số a, b, c dương . Chứng tỏ rằng M = a/a+b + b/b+c + c/a+c không là số nguyên
b) Cho tỉ lệ thức a/b =c/d ( b,d khác 0 ; a khác -c ; b khác -d ) . Chứng minh: (a+b/c+d)^2 = a^2+b^2/c^2+d^2
c) Cho 1/c = 1/2(1/a+1/b) (Với a, b, c khác 0; b khác c). Chứng minh rằng: a/b=a-c/c-b
cho 6 số nguyên dương a<b<c<d<m<n.
Chứng minh rằng: a+c+m/a+b+c+d+m+n < 1/2
cho các số hữu tỉ x=a/b; y= c/d ; b > 0 ; d< 0 và các số tự nhiên m,n với m # 0 . chứng minh rằng: nếu a/b < c/d thì a/b < ma + nc / mb + nd < c/d
Cho 6 số nguyên dương a < b < c < d < m < n
Chứng minh rằng: (a+c+m)/(a+b+c+d+m+n) < 1/2
Cho 6 số nguyên dương a, b, c, d, m, n thỏa a<b<c<d<m<n
Chứng minh rằng \(\frac{a+c+m}{a+b+c+d+m+n}\)<\(\frac{1}{2}\)
Cho 6 số nguyên dương a, b, c, d, m, n thỏa: a < b < c < d < m < n.
Chứng minh rằng \(\frac{a+c+m}{a+b+c+d+m+n}\)< \(\frac{1}{2}\)
Cho 6 số nguyên dương a<b<c<d<m<n. Chứng minh rằng : \(\frac{a+c+m}{a+b+c+d++m+n}< \frac{1}{2}\)