a,cho (a/b+c)+(b/c+a)+(c/a+b)=1.cm (a2/b+c)+(b2/c+a)+(c2/a+b)=0
b,cho (x/a)+(y/b)+(z/c)=1va(a/x)+(b/y)+(c/z)=0
cm(x2/a2)+(y2/b2)+(z2/c2)=1
cho (a+b+c)^2=a^2+b^2+c^2 với a,b,c là 3 số khác 0 .CM 1/a^2 + 1/b^2 + 1/c^2 = 3abc
cho a>b>c>0 và a^2+b^2+c^2=1.cm a^3/(b+c) + b^3/(a+c) +c^3/(a+b)>=1/2
cho a/b+c +b/c+a +c/a+b =1.Cm a^2/b+c +b^2/c+a +c^2/a+b =0
cho 3 số a,b,c thỏa mãn 0<=a,b,c<=1 và a+b+c=2. cm: a^2+b^2+c^2<=2
cho a +b+c=0
Cm rằng : \(\frac{1}{a^2+b^2-c^2}+\frac{1}{a^2+c^2-b^2}+\frac{1}{b^2+c^2-a^2}=0\left(a.b.c\ne0\right)\)
CM: 16^a +16^b +16^c >= 2^a+ 2^b +2^c, biết a+b+c= 0
cho a,b,c>0. CM: a/b + b/a + a/c>= căn a/b + căn b/a+ căn a/c
Cho a, b, c>0 cm
a^2/(b^2+c^2)+b^2/(c^2+a^2)+c^2/(a^2+b^2)>=a/(b+c)+b/(c+a)+c/(a+b)
cho a b c và x y z thỏa mãn a+b+c=1(1) a^2+b^2+c^2=1(2), x/a=y/b=z/c(3). Cm xy+yz+xz=0