Có \(\tan\alpha=\frac{\sin\alpha}{\cos\alpha};\cot\alpha=\frac{\cos\alpha}{\sin\alpha}\)
\(\Rightarrow\frac{\sin\alpha}{\cos\alpha}+\frac{\cos\alpha}{\sin\alpha}=8\)
\(\Leftrightarrow\sin^2\alpha+\cos^2\alpha=8\sin\alpha.\cos\alpha\)
\(\Leftrightarrow\sin\alpha.\cos\alpha=\frac{1}{8}\Leftrightarrow2\sin\alpha.\cos\alpha=\frac{1}{4}\)
Có \(\sin^2\alpha+\cos^2\alpha=1\Leftrightarrow\sin^2\alpha+2\sin\alpha.\cos\alpha+\cos^2\alpha=1+2\sin\alpha.\cos\alpha\)
\(\Leftrightarrow\left(\sin\alpha+\cos\alpha\right)^2=1+\frac{1}{4}=\frac{5}{4}\)
\(\Leftrightarrow\sin\alpha+\cos\alpha=\frac{\sqrt{5}}{2}\)