a) cotα = 0,6 (0 < α < 90°). Tính 2tanα - 3cotα + sin2α
b) 0 < α < 90°, cos α = 4/5 . Tính 3sinα - 2cotα + tan2α
c) 0 < α < 90° , sin α = 3/5 . Tính tan α - cotα/cos2α
d) 0 < α < 90° , tanα = 2. Tính 4cos2α - 2sinα/cot α
Cho \(\tan\alpha=3\)
Tính \(a)M=\frac{\cos\alpha+\sin\alpha}{\cos\alpha-\sin\alpha}\\ b)B=\frac{\sin15^o+\cos15^o}{\cos15^o}-\cot75^o\)
Cho sin alpha = 15/17. Tính cos alpha, tan alpha
Tính:
a, A= 4cos^2 alpha - 6 sin^2 alpha, biết sin alpha = 1/5
b, B= sin^2 x cos alpha, biết tan alpha + cot alpha = 3
1. Đơn giản biểu thức
a. \(\sin\alpha\cdot\cos\alpha\left(\tan\alpha+\cot\alpha\right)\)
b. \(\left(\sin^2\alpha+\cos^2\alpha\right)^2+\left(\sin\alpha-\cos\alpha\right)^2\)
c. \(\tan^2\alpha-\sin^2\alpha\cdot\tan^2\alpha\)
Đơn giản các biểu thức sau:
\(a,\left(\sin\alpha+\cos\alpha\right)^2+\left(\sin\alpha-\cos\alpha\right)^2\)
\(b,\sin\alpha\cos\alpha\left(\tan\alpha+\cot\alpha\right)\)
Chứng minh:
\(a,tan\alpha=\frac{sin\alpha}{cos\alpha}\)
\(b,cot\alpha=\frac{cos\alpha}{sin\alpha}\)
Chứng minh các công thức sau :
\(Tan\alpha=\dfrac{sin\alpha}{cos\alpha}\)
\(Cot\alpha=\dfrac{cos\alpha}{sin\alpha}\)
\(sin^2\alpha+cos^2\alpha=1\)
\(1+tan^2\alpha=\dfrac{1}{cos^2\alpha}\)
\(1+cos^2\alpha=\dfrac{1}{sin^2\alpha}\)
\(cos^4\alpha-sin^4\alpha=2cos^2\alpha-1\)
Rút gọn
\(A=\cos^2\alpha+cos^2\alpha+cot^2\alpha\)
\(B=\sin^2\alpha+sin^2\alpha\cdot tan^2\alpha\)
\(C=\frac{2cos^2\alpha-1}{\sin\alpha+cos^2\alpha}\)
bài 1
a) Biết tan \(\alpha=\sqrt{3}\) hãy tính sin \(\alpha\) , cos \(\alpha\) , cot \(\alpha\)
b) hãy tính tan\(\alpha\) biết sin\(\alpha=\dfrac{15}{17}\)
bài 2 : cho \(\alpha\) là góc nhọn bất kì. CMR biểu thức sau khong phụ thuộc vào \(\alpha\)
A = (sin \(\alpha+cos\alpha\))\(^2\) + \(\left(\sin\alpha-\cos\alpha\right)^2+2\)