Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
_Phạm Thị Phương thảo_

Chia số 520 thành ba phần tỉ lệ nghịch với 2;3;4 tìm mỗi phần

Đức Phạm
28 tháng 7 2017 lúc 20:55

Đặt ba phần tỉ lệ nghịch đó là : x ; y ; z. Ta có: 

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) và \(x+y+z=520\)

Áp dụng tính chất dãy tỉ số bằng nhau . ta có : 

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=\frac{520}{9}\)

\(\frac{x}{2}=\frac{520}{9}\Rightarrow x=\frac{520}{9}.2=\frac{1040}{9}\)

\(\frac{y}{3}=\frac{520}{9}\Rightarrow y=\frac{520}{9}.3=\frac{520}{3}\)

\(\frac{z}{4}=\frac{520}{9}\Rightarrow z=\frac{520}{9}.4=\frac{2080}{9}\)

Vậy ...

Trần Phúc
29 tháng 7 2017 lúc 10:03

Gọi ba phần cần chia là x;y;z.

Vì x;y;z tỉ lệ nghịch với 2,3,4 ta có:

\(x.2=y.3=z.4\)và \(x+y+z=520\)

\(\Rightarrow\frac{x}{3}=\frac{y}{2};\frac{y}{4}=\frac{z}{3}\Leftrightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)và \(x+y+z=520\)

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}=\frac{x+y+z}{6+4+3}=\frac{520}{13}=40\)

\(\hept{\begin{cases}\frac{x}{6}=40\Rightarrow x=40.6=240\\\frac{y}{4}=40\Rightarrow y=40.4=160\\\frac{z}{3}=40\Rightarrow z=40.3=120\end{cases}}\)

Vậy ba phần cần chia lần lượt là 240,160,120.


Các câu hỏi tương tự
Cherry
Xem chi tiết
Châu Minh Trọng
Xem chi tiết
Hoàng Nhật Anh
Xem chi tiết
phuc hoang
Xem chi tiết
Trần Nhật
Xem chi tiết
Tuấn
Xem chi tiết
Đỗ Huyền Thu An
Xem chi tiết
Đỗ Đức Đạt
Xem chi tiết
Tô Tử Linh
Xem chi tiết