Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phí Lê Tường Vi

Chỉ ra 3 số tự nhiên m, n, p thỏa mãn các điều kiện sau: m không chia hết cho p và n không chia hết cho p nhưng m + n chia hết cho p

28 . Phạm Tài Đức Pháp
12 tháng 10 2021 lúc 21:25

TL

Ta có thể đưa ra nhiều bộ ba số thỏa mãn yêu cầu bài toán như sau:

+ Ví dụ 1. Các số 7; 9 và 2.

Ta có 7 không chia hết cho 2 và 9 cũng không chia hết cho 2 nhưng 7 + 9 = 16 lại chia hết cho 2. 

+ Ví dụ 2. Các số 13; 19 và 4. 

Ta có 13 không chia hết cho 4 và 19 cũng không chia hết cho 4 nhưng 13 + 19 = 32 lại chia hết cho 4. 

+ Ví dụ 3. Các số 33; 67 và 10.

Ta có 33 không chia hết cho 10 và 67 cũng không chia hết cho 10 nhưng 33 + 67 = 100 lại chia hết cho 10. 

Tương tự, các em có thể đưa ra các bộ ba số khác nhau thỏa mãn yêu cầu bài toán. 

Qua bài tập 6 này, ta rút ra nhận xét như sau: 

Nếu m chia hết cho p và n chia hết cho p thì tổng m + n chia hết cho p nhưng điều ngược lại chưa chắc đã đúng. 

Nếu tổng m + n chia hết cho p thì chưa chắc m chia hết cho p và n chia hết cho p. 

HT ( Sai thì cho mik xin lỗi )

Khách vãng lai đã xóa
No name
12 tháng 10 2021 lúc 21:25

3 và 8 và 11

Chắc vậy thôi nha bạn :)

Khách vãng lai đã xóa
Phạm Anh Thái
12 tháng 10 2021 lúc 21:27

VD nhé

10 ⋮ 5

4 + 6 ⋮ 5

Nhưng 4 '/. 5; 6 '/. 5 

~HT~

Khách vãng lai đã xóa
Nguyễn Mai Dung
12 tháng 10 2021 lúc 21:30

TL:
 

Ta có thể đưa ra nhiều bộ ba số thỏa mãn yêu cầu bài toán như sau:

+ Ví dụ 1. Các số 7; 9 và 2.

Ta có 7 không chia hết cho 2 và 9 cũng không chia hết cho 2 nhưng 7 + 9 = 16 lại chia hết cho 2. 

+ Ví dụ 2. Các số 13; 19 và 4. 

Ta có 13 không chia hết cho 4 và 19 cũng không chia hết cho 4 nhưng 13 + 19 = 32 lại chia hết cho 4. 

+ Ví dụ 3. Các số 33; 67 và 10.

Ta có 33 không chia hết cho 10 và 67 cũng không chia hết cho 10 nhưng 33 + 67 = 100 lại chia hết cho 10. 

Tương tự, các em có thể đưa ra các bộ ba số khác nhau thỏa mãn yêu cầu bài toán. 

Qua bài tập 6 này, ta rút ra nhận xét như sau: 

Nếu m chia hết cho p và n chia hết cho p thì tổng m + n chia hết cho p nhưng điều ngược lại chưa chắc đã đúng. 

Nếu tổng m + n chia hết cho p thì chưa chắc m chia hết cho p và n chia hết cho p. 
HT 

Khách vãng lai đã xóa
Nguyễn Gia Bảo
12 tháng 10 2021 lúc 21:32

thang nay bi ngu a

Khách vãng lai đã xóa
Lê Mạnh Hùng
12 tháng 10 2021 lúc 21:39

TL

Ta có thể đưa ra nhiều bộ ba số thỏa mãn yêu cầu bài toán như sau:

+ Ví dụ 1. Các số 7; 9 và 2.

Ta có 7 không chia hết cho 2 và 9 cũng không chia hết cho 2 nhưng 7 + 9 = 16 lại chia hết cho 2. 

+ Ví dụ 2. Các số 13; 19 và 4. 

Ta có 13 không chia hết cho 4 và 19 cũng không chia hết cho 4 nhưng 13 + 19 = 32 lại chia hết cho 4. 

+ Ví dụ 3. Các số 33; 67 và 10.

Ta có 33 không chia hết cho 10 và 67 cũng không chia hết cho 10 nhưng 33 + 67 = 100 lại chia hết cho 10. 

Tương tự, các em có thể đưa ra các bộ ba số khác nhau thỏa mãn yêu cầu bài toán. 

Qua bài tập 6 này, ta rút ra nhận xét như sau: 

Nếu m chia hết cho p và n chia hết cho p thì tổng m + n chia hết cho p nhưng điều ngược lại chưa chắc đã đúng. 

Nếu tổng m + n chia hết cho p thì chưa chắc m chia hết cho p và n chia hết cho p. 

^HT^

Khách vãng lai đã xóa

Các câu hỏi tương tự
có tên Tao không
Xem chi tiết
Phạm Quang Minh
Xem chi tiết
Hoàng Nguyễn Mỹ Hà
Xem chi tiết
백합Lily
Xem chi tiết
Dương Quỳnh Như
Xem chi tiết
12a10 Lớp
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết