a: \(\Leftrightarrow\left(x-2010\right)\left(7x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2010\\x=-\dfrac{1}{7}\end{matrix}\right.\)
b: \(\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
a)7x(x-2010)+(x-2010)=-
(x-2010)(7x+1)=0
x=2010 hoặc x=\(-\dfrac{1}{7}\)
Vậy \(x\in\left\{2010;-\dfrac{1}{7}\right\}\)
b)\(2x^2-2x=x^2-2x+1\)
\(2x^2-2x-x^2+2x-1=0\)
\(x^2-1=0\)
\(x^2=1\)
\(x=\pm1\)
Vậy \(x\in\left\{1;-1\right\}\)
a) 7𝑥(𝑥 − 2010) + 𝑥 − 2010 = 0
\(\Leftrightarrow7x\left(x-2010\right)+\left(x-2010\right)=0\)
\(\Leftrightarrow\left(x-2010\right)\left(7x+1\right)=0\)
\(\Leftrightarrow x=2010;x=\dfrac{-1}{7}\)
b) \(2x\left(x-1\right)=\left(x-1\right)^2\)
\(\Leftrightarrow2x^2-2x=x^2-2x+1\)
\(\Leftrightarrow2x^2-2x-x^2+2x-1=0\)
\(\Leftrightarrow x^2-1=0\)
\(\Leftrightarrow x=1;x=-1\)