=> \(C=\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+...+\frac{19}{81.100}\)
C = \(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+....+\frac{1}{81}-\frac{1}{100}\)
C = \(1-\frac{1}{100}
=> \(C=\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+...+\frac{19}{81.100}\)
C = \(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+....+\frac{1}{81}-\frac{1}{100}\)
C = \(1-\frac{1}{100}
Chứng minh rằng:
\(\frac{3}{1^2\times2^2}+\frac{5}{2^2\times3^2}+\frac{7}{3^2\times4^2}+......+\frac{19}{9^2\times10^2}\) \(<1\)
Các bạn ơi ,giúp mình với
Bài 1:Rút gọn
a)\(\frac{2^{19}\times27^3+15\times4^9\times9^4}{6^9\times2^{10}+12^{10}}\)
b)\(\frac{\left(\frac{-1}{2}\right)^3-\left(\frac{3}{4}\right)^3\times\left(-2\right)^2}{2\times\left(-1\right)^5+\left(\frac{3}{4}\right)^2-\frac{3}{8}}\)
c)\(\frac{45\times9^4-2\times6^4}{2^{19}\times3^8+6^8\times20}\)
Bài 2:Tìm x
a)\(5^x+5^{x+2}=650\)
b)\(3^{x-1}+5\times3=162\)
Cho C = \(\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{99\times100}\). so sánh c với \(\frac{1}{2}\)
1.Tính giá trị tuyệt đối:(hẹp me)
a)\(\frac{72^3\times54^2}{108^4}\)
b)\(\frac{3^{10}\times11+3^{10}\times5}{3^9\times2^4}\)
c)\(\left(1:\frac{1}{7}\right)^2[\left(2^2\right)^3:2^5]\times\frac{1}{49}\)
d)\(\frac{4^6\times3^5-2^{12}\times3^6}{2^{12}\times9^3+8^4\times3^5}\)
Tính C=\(\frac{1}{1\times2\times3}+\frac{1}{2\times3\times4}+\frac{1}{3\times4\times5}+....+\frac{1}{n\times\left(n+1\right)\times\left(n+2\right)}\)
Bạn nào giúp mik nhớ viết cả cách giải cho mik nhé!!!!!!!!!!
1.Tính giá trị tuyệt đối:(hẹp me)
a)\(\frac{72^3\times54^2}{108^4}\)
b)\(\frac{3^{10}\times11+3^{10}\times5}{3^9\times2^4}\)
c)\(\left(1:\frac{1}{7}\right)^2[\left(2^2\right)^3:2^5]\times\frac{1}{49}\)
d)\(\frac{4^6\times3^5-2^{12}\times3^6}{2^{12}\times9^3+8^4\times3^5}\)
Viết các biểu thức sau dưới dạng \(a^n\)(a thuộc Q, n thuộc N)
a) \(9\times3^3\times\frac{1}{81}\times3^2\)
b) \(4\times2^5\div\left(2^3\times\frac{1}{16}\right)\)
c) \(3^2\times2^5\times\left(\frac{2}{3}\right)^2\)
d) \(\left(\frac{1}{3}\right)^2\times\frac{1}{9}\times9^2\)
Tìm x :
\(\frac{\left(1\times2+2\times3+3\times4+...+98\times99\right)x}{26950}=12\frac{6}{7}:\frac{3}{2}\)
Chứng minh rằng: \(\frac{1\times2-1}{2!}+\frac{2\times3-1}{3!}+\frac{3\times4-1}{4!}+...+\frac{99\times100-1}{100!}<2\)