\(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+....+\frac{3}{99.101}\)
\(=\frac{3}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{3}{2}\left(1-\frac{1}{101}\right)\)
\(=\frac{3}{2}.\frac{100}{101}\)
\(=\frac{150}{101}\)
Đặt A=\(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{99.101}\)
\(\frac{1}{2}A=\frac{1}{2}\left(\frac{3}{1.3}+\frac{3}{3.5}+...+\frac{3}{99.101}\right)\)
\(\frac{1}{2}A=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\)
\(\frac{1}{2}A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)
\(\frac{1}{2}A=1-\frac{1}{101}\)
\(\frac{1}{2}A=\frac{100}{101}\)
\(A=\frac{100}{101}:\frac{1}{2}\)
\(A=\frac{200}{101}\)
\(\frac{3}{1\cdot3}+\frac{3}{3\cdot5}+\frac{3}{5\cdot7}+...+\frac{3}{99\cdot101}\)
Đặt A = .........................................................
\(\frac{3}{2}A=\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(\frac{3}{2}A=\left(1-\frac{1}{101}\right)\)
\(\frac{3}{2}A=\frac{100}{101}\)
\(A=\frac{3}{2}\cdot\frac{100}{101}=\frac{300}{202}\)
\(A=\frac{105}{101}\)