Chọn B.
Ta có:
Phương tích của điểm M đối với đường tròn (C) tâm I là:
MI2 - R2 = 10 – 4 = 6
Chọn B.
Ta có:
Phương tích của điểm M đối với đường tròn (C) tâm I là:
MI2 - R2 = 10 – 4 = 6
Câu 20: Trong mặt phăng tọa độ Oxy, cho điểm I(4;3), đường thăng d:3x+4y-4=0 và đường tròn (C):x²+y²-2x+6y-2=0.
a) Tìm tọa độ tâm và bán kính R của đường tròn (C).
b) Viết phương trình đường tròn có tâm I và đi qua A(-4;1)
c) Viết phương trình đườNg tròn (C') có tâm là I và cắt d tại hai điếm M, N sao cho MN =6
Câu 20: Trong mặt phăng tọa độ Oxy, cho điểm I(4;3), đường thăng d:3x+4y-4=0 và đường tròn (C):x²+y²-2x+6y-2=0.
a) Tìm tọa độ tâm và bán kính R của đường tròn (C).
b) Viết phương trình đường tròn có tâm I và đi qua A(-4;1)
c) Viết phương trình đườNg tròn (C') có tâm là I và cắt d tại hai điếm M, N sao cho MN =6
Giải thích cụ thể câu c cho mình.
Câu 1: cho tam ABC. Có bao nhiêu điểm M thỏa mãn | vecto MA+vectoMB+vectoMC| = 3
a.1
b.2
c.3
d. vô số
Câu 2: cho tam giác ABC đều cạnh a. biết rằng tập hợp các điểm M thỏa mãn đẳng thức |2vectoMA+3vectoMB+4vectoMC|=|vectoMB-vectoMA| là đường tròn cố định có bán kính R. tính bán kính R theo A?
Câu 3: Cho 2 điểm A.B phân biệt và cố định, với I là trung điểm của AB. Tập hợp các điểm M thỏa mãn đẳng thức |2vectoMA+vectoMB|=|vectoMA+2vectoMB| là:
a. đường trung trực của đoạn thẳng AB
b. đường tròn đường kính AB
c. đường trung trực của đoạn thẳng IA
d. đường tròn tâm A, bán kính AB
Câu 1: Cho 2 điểm A,B phân biệt và cố định, với I là trung điểm của AB. Tập hợp các điểm M thỏa mãn đẳng thức \(\left|2.vectoMA+vectoMB\right|=\left|vectoMA+2.vectoMB\right|\)là:
A. đường trung trực của đoạn AB
B. đường tròn đường kính AB
C. đường trung trực đoạn thẳng IA
D. đường tròn tâm A, bán kính AB
Câu 2: cho tam giác ABC đều cạnh a. Biết rằng tập hợp các điểm M thỏa mãn đẳng thức \(\left|3.vectoMA+3.vectoMB+4.vectoMC\right|=\left|vectoMB-vectoMA\right|\)là đường tròn cố định có bán kính R. Tính bán kính R theo a.
A. R = a/3
B. R = a/9
C. R = a/2
D. R = a/6
Câu 3: Cho hình chữ nhật ABCD và số thực K>0. Tập hợp các điểm M thỏa mãn đẳng thức \(\left|vectoMA+vectoMB+vectoMC+vectoMD\right|=k\)là:
A. một đoạn thẳng
B. một đường thẳng
C. một đường tròn
D. một điểm
Câu 4:Cho tam giác ABC. Có bao nhiêu điểm M thỏa mãn \(\left|vectoMA+vectoMB+vectoMC\right|=3\)?
A.1
B.2
C.3
D. vô số
Mệnh đề nào sau đây đúng?
(1) Đường tròn (C1) : x2+ y2 – 2x +4y - 4= 0 có tâm I( 1; -2) bán kính R= 3.
(2) Đường tròn (C2) x2+ y2 – 5x +3y – 0,5= 0 có tâm bán I 5 2 ; - 3 2 kính R= 3.
A. Chỉ (1).
B. Chỉ (2).
C.cả hai
D. Không có.
Bán kính đường tròn (C) có tâm I(-1;2) và tiếp xúc với đường thẳng d: x + 2y + 7 = 0 bằng:
A. R = 5
B. R = 2 5
C. R = 1 5
D. R = 2
Trong mặt phẳng với hệ tọa độ Oxy, cho ba điểm A(1;2), B(3;-1), C(-2;1)
a) Viết phương trình tổng quát của AB và tính diện tích tam giác ABC
b) Viết phương trình đường tròn đường kính AB
Bài 10:Cho ABC có a = 8, b =10, c =13 a. ABC có góc tù hay không ? Tính bán kính đường tròn ngoại tiếp ABC. b. Tính diện tích ABC
Bài 11:Cho tam giác ABC có: a = 6, b = 7, c = 5. a) Tính S ,h ,R,r ABC a b) Tính bán kính đường tròn đi qua A, C và trung điểm M của cạnh AB.
Bài 12:Cho tam giác ABC có: AB = 6, BC = 7, AC = 8. M trên cạnh AB sao cho MA = 2 MB. a) Tính các góc của tam giác ABC. b) Tính S ,h ,R ABC a , r. c) Tính bán kính đường tròn ngoại tiếp ∆MBC.
Bài 13:Cho ABC có 0 0 A B b = = = 60 , 45 , 2 tính độ dài cạnh a, c, bán kính đường tròn ngoại tiếp và diện tích tam giác ABC
Bài 14:Cho ABC AC = 7, AB = 5 và 3 cos 5 A = . Tính BC, S, a h , R, r.
Bài 15:Cho ABC có 4, 2 m m b c = = và a =3 tính độ dài cạnh AB, AC.
Bài 16:Cho ABC có AB = 3, AC = 4 và diện tích S = 3 3 . Tính cạnh BC
Bài 17:Cho tam giác ABC có ˆ o A 60 = , c h 2 3 = , R = 6. a) Tính độ dài các cạnh của ∆ABC. b) Họi H là trực tâm tam giác ABC. Tính bán kính đường tròn ngoại tiếp ∆AHC.
Bài 18:a. Cho ABC biết 0 0 a B C = = = 40,6; 36 20', 73 . Tính BAC , cạnh b,c. b.Cho ABC biết a m = 42,4 ; b m = 36,6 ; 0 C = 33 10' . Tính AB, và cạnh c.
Bài 19:Tính bán kính đường tròn nội tiếp ABC biết AB = 2, AC = 3, BC = 4.
Bài 20:Cho ABC biết A B C (4 3; 1 , 0;3 , 8 3;3 − ) ( ) ( ) a. Tính các cạnh và các góc của ABC b. Tính chu vi và diện tích ABC