Cho tam giác ABC có A(1;-2;0); B(2;1;-2); C(0;3;4). Tìm tọa độ điểm D để tứ giác ABCD là hình bình hành.
A. (1;0;-6)
B. (-1;0;6)
C. (1;6;-2)
D. (1;6;2)
CH 1.Trong không gian Oxyz ; Cho 3 điểm: A(-1; 1; 4) , B(1;- 1; 5) và C(1; 0; 3), toạ độ điểm D để ABCD là một hình bình hành là: A. D(-1; 2; 2) C. D(-1;-2 ; 2) D. D(1; -2; -2)
CH 2.Trong không gian Oxyz cho 2 điểm A (1;–2;2) và B (– 2:0;1). Toạ độ điềm C nằm trên trục Oz để A ABC cân tại C là : A. C(0;0;2) C. C(0;–1;0) B. D(1; 2; -2) В. С(0,:0,-2) D. C( ;0;0)
CH 3. Trong không gian Oxyz cho 2 vectơ a =(1; 2; 2) và (1; 2; -2); khi đó : ¿(i+6) có giá trị bằng : С. 4 A. 10 В. 18 D. 8
CH 4.Trong không gian Oxyz cho 2 vecto a= (3; 1; 2) và b= (2; 0; -1); khi đó vectơ 2a-b có độ dài bằng : А. 3/5 В. 29 С. M D. S/5
CH 5. Cho hình bình hành ABCD với A (-1;0;2), B(3;4;0) D (5;2;6). Tìm khẳng định sai. A. Tâm của hình bình hành có tọa độ là (4;3;3) B. Vecto AB có tọa độ là (4;-4;-2) C. Tọa độ của điểm C là (9;6;4) D. Trọng tâm tam giác ABD có tọa độ là (3;2;2)
Cho tứ diện ABCD có tam giác ABC là tam giác cân với B A C ⏜ = 120 0 , A B = A C = a . Hình chiếu của D trên mặt phẳng ABC là trung điểm của BC. Tính bán kính R của mặt cầu ngoại tiếp tứ diện ABCD biết thể tích của tứ diện ABCD là V = a 3 16 .
Trong không gian với hệ tọa độ Oxya, cho tứ diện ABCD có A(-1;1;6), B(-3;-2;-4), C(1;2;-1), D(2;-2;0). Điểm M(a,b,c) thuộc đường thẳng CD sao cho tam giác ABM có chu vi nhỏ nhất. Tính a+b+c.
A.1.
B.2.
C.3.
D.0.
Cho tứ diện ABCD có tam giác ABC là tam giác cân với góc B A C ⏜ = 120 0 , AB=AC=a. Hình chiếu của D trên mặt phẳng ABC là trung điểm của BC. Tính bán kính R của mặt cầu ngoại tiếp tứ diện ABCD biết thể tích của tứ diện ABCD là V = a 3 16
Trong không gian với hệ trục Oxyz, cho tam giác ABC với A(2;0;-3); B(-1;-2;4); C(2;-1;2). Biết điểm E(a,b,c) là điểm để biểu thức P = E A → + E B → + E C → đạt giá trị nhỏ nhất. Tính T=a+b+c
A. T=3
B. T=1
C. T=0
D. T=-1
Cho A; B; C tương ứng là các điểm trong mặt phẳng phức biểu diễn các số phức z1 = 1 + 2i; z2 = -2 + 5i ; z3 = 2 + 4i . Số phức z biểu diễn bởi điểm D sao cho tứ giác ABCD là hình bình hành là
A. -1 + 7i.
B. 5 + i.
C. 1 + 5i.
D. 3 + 5i.
Trong mặt phẳng phức cho các điểm A, B, C theo thứ tự biểu diễn các số phức z 1 = - i ; z 2 = 2 + i ; z 3 = - 1 + i . Tìm số phức z biểu diễn điểm D sao cho tứ giác ABCD là hình bình hành
Trong mặt phẳng phức cho các điểm A, B, C theo thứ tự biểu diễn các số phức z 1 = - i , z 2 = 2 + i , z 3 = - 1 + i . Tìm số phức z biểu diễn điểm D sao cho tứ giác ABCD là hình bình hành
A. z = -3 - i
B. z = -2 – i
C. z = -1 – 3i
D. z = -3
Trong hệ trục tọa độ Oxyz, cho các điểm M(1;-1;1), N(2;0;-1), P(-1;2;1). Xét điểm Q sao cho tứ giác MNPQ là một hình bình hành. Tọa độ Q là