\(A=\frac{99}{x^2-3x+13}=\frac{99}{\left(x^2-2.\frac{3}{2}.x+\frac{9}{4}\right)+\frac{43}{4}}=\frac{99}{\left(x-\frac{3}{2}\right)^2+\frac{43}{4}}\)
Vì \(\left(x-\frac{3}{2}\right)^2\ge0\Rightarrow\left(x-\frac{3}{2}\right)^2+\frac{43}{4}\ge\frac{43}{4}\Rightarrow A=\frac{99}{\left(x-\frac{3}{2}\right)^2+\frac{43}{4}}\le\frac{396}{43}\)
=>\(A_{min}=\frac{396}{43}\Leftrightarrow\left(x-\frac{3}{2}\right)^2=0\Leftrightarrow x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{2}\)
Để A lớn nhất => B bé nhất. Ta có:
B= x2 - 3x +13 = x^2 - 2x1,5x + 9/4 -9/4 +13 = (x-1,5)2 + 43/4
Vì (x-1,5)2 >= 0 với mọi x
(x-1,5)2 + 43/4 >43/4 với mọi x.
=> Min B = 43/4 tại x=1,5
=> Max A = 99/(43/4) = 396/43 tại x = 1,5