Ta có : $f(-2) = 4a-2b+c$
$f(3) = 9a + 3x + c$
$\to f(-2) + f(3) = 13a+b+2c= 0$
$\to f(-2) = -f(3)$
$\to f(-2).f(3) = -[f(3)]^2$ \(\le\) $ 0 $
Do đó phát biểu $A$ đúng.
Ta có : $f(-2) = 4a-2b+c$
$f(3) = 9a + 3x + c$
$\to f(-2) + f(3) = 13a+b+2c= 0$
$\to f(-2) = -f(3)$
$\to f(-2).f(3) = -[f(3)]^2$ \(\le\) $ 0 $
Do đó phát biểu $A$ đúng.
Cho đa thức: f(x)= ax^2+bx=c. Biết 13a+b+2c= 0. Chứng minh f(-2).f(3) > hoặc = 0
cho đa thức f(x)= ax^2 + bc + c với a, b, c là các số thực thỏa mãn 13a-b+2c=0. Chứng tỏ rằng: f(2).f(-3)<= 0
Cho đa thức f(x)=ax^2+bx+c với a,b,c thuộc R biết 13a+b +2c=0 . Chứng minh f(-2). f(3)<0
cho đa thức F(x)=ax^2+bx+c chứng tỏ rằng F(-2).F(3) bé hơn hoặc bằng 0 biết rằng 13a+b+2c=0
Cho đa thức f (x) = ax2 + bx + c thỏa mãn 25a + b + 2c = 0. Chứng minh f (-3) × f (-4) lớn hơn hoặc bằng 0
cho đa thức f(x)= \(ax^2\)+bx+c chứng tỏ rằng f(-2).f(3)\(\le\)0 nếu 13a+b+2c=0
Cho đa thức f(x)= ax2 +bx + c biết 13a+b+c=0.
CMR ƒ(2)׃(-3)≤0
Cho f(x)=ax2+bx+c voi a,b,c la cac so huu ti.Chung minh rang:f(-2).f)3)≤0.Biet rang:13a+b+2c=0.
Cho đa thức f(x) = ax2 + bx + c
chứng tỏ rằng : f( -2).f(-3) < hoặc = 0 nếu 13a + b + 2c = 0
MÌNH XIN CÁC BẠN GIÚP MÌNH