Chứng minh bằng phương pháp phản chứng :
Giả sử √77là một số hữu tỉ . Suy ra có thể biểu diễn dưới dạng √7=mn7=mn (m,n∈Z,n≠0m,n∈Z,n≠0) và mnmntối giản.
⇒7n2=m2⇒m2⋮7⇒m⋮7⇒7n2=m2⇒m2⋮7⇒m⋮7(1)
Do đó, đặt m = 7k (k∈Nk∈N)
=> m2=49k2⇒n2=7k2⇒n2⋮7⇒n⋮7m2=49k2⇒n2=7k2⇒n2⋮7⇒n⋮7(2)
Từ (1) và (2) Suy ra được m,n cùng chia hết cho 7
=> mnmn chưa là phân số tối giản (vô lí vì trái với giả thiết)
Điều vô lí chứng tỏ √77là số vô tỉ.
giả sử √7 là số hữu tỉ
=> √7 = a/b (a,b ∈ Z ; b ≠ 0)
không mất tính tổng quát giả sử (a;b) = 1
=> 7 = a²/b²
<=> a² = b7²
=> a² ⋮ 7
7 nguyên tố
=> a ⋮ 7
=> a² ⋮ 49
=> 7b² ⋮ 49
=> b² ⋮ 7
=> b ⋮ 7
=> (a;b) ≠ 1 (trái với giả sử)
=> giả sử sai
=> √7 là số vô tỉ
giả sử √7 là số hữu tỉ
=> √7 = a/b (a,b ∈ Z ; b ≠ 0)
không mất tính tổng quát giả sử (a;b) = 1
=> 7 = a²/b²
<=> a² = b7²
=> a² ⋮ 7
7 nguyên tố
=> a ⋮ 7
=> a² ⋮ 49
=> 7b² ⋮ 49
=> b² ⋮ 7
=> b ⋮ 7
=> (a;b) ≠ 1 (trái với giả sử)
=> giả sử sai
=> √7 là số vô tỉ
giả sử √7 là số hữu tỉ
=> √7 = a/b (a,b ∈ Z ; b ≠ 0)
không mất tính tổng quát giả sử (a;b) = 1
=> 7 = a²/b²
<=> a² = b7²
=> a² ⋮ 7
7 nguyên tố
=> a ⋮ 7
=> a² ⋮ 49
=> 7b² ⋮ 49
=> b² ⋮ 7
=> b ⋮ 7
=> (a;b) ≠ 1 (trái với giả sử)
=> giả sử sai
=> √7 là số vô tỉ
# Aeri #
giả sử √7 là số hữu tỉ
=> √7 = a/b (a,b ∈ Z ; b ≠ 0)
không mất tính tổng quát giả sử (a;b) = 1
=> 7 = a²/b²
<=> a² = b7²
=> a² ⋮ 7
7 nguyên tố
=> a ⋮ 7
=> a² ⋮ 49
=> 7b² ⋮ 49
=> b² ⋮ 7
=> b ⋮ 7
=> (a;b) ≠ 1 (trái với giả sử)
=> giả sử sai
=> √7 là số vô tỉ
Vì √7 = 2,645751311
Mà 2,645751311 là số vô tỉ nên √7 là số vô tỉ