Đáp án: B
Tam thức f(x) = x 2 - (m + 2)x + 8m + 1 đổi dấu hai lần khi và chỉ khi f(x) có hai nghiệm phân biệt
Ta có: Δ = [-(m + 2) ] 2 - 4.(8m + 1) = m 2 - 28m
f(x) có hai nghiệm phân biệt khi và chỉ khi
Δ > 0 ⇔ m 2 - 28m > 0
Đáp án: B
Tam thức f(x) = x 2 - (m + 2)x + 8m + 1 đổi dấu hai lần khi và chỉ khi f(x) có hai nghiệm phân biệt
Ta có: Δ = [-(m + 2) ] 2 - 4.(8m + 1) = m 2 - 28m
f(x) có hai nghiệm phân biệt khi và chỉ khi
Δ > 0 ⇔ m 2 - 28m > 0
Phương trình
( m + 1 ) x 2 - 3 ( m - 1 ) x + 2 = 0
có một nghiệm gấp đôi nghiệm kia thì giá trị của tham số m là:
A. m = 1 B. m = -1
C. m = 0 hoặc m = 3 D. m = 2
1/ Tìm các giá trị của tham số m để bpt ( m-1) x^2- ( m-1) x+1>0 nghiệm đúng vs mọi giá trị của x. 2/ Tìm giá trị của tham số m để pt x^2 - ( m-2) x+m^2 -4m=0 có 2 nghiệm trái dấu. 3/ Tìm giá trị của tham số m để pt x^2 -mx+1=0 có 2 nghiệm phân biệt.
cho f(x)=-x^2-2x+m. Tất cả các giá trị của tham số m để f(x) nhỏ hơn hoặc bằng 0 với mọi x thuộc R
Cho x,y là các số thực không đồng thời bằng 0 . Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \(F=\frac{x^2+8xy+7y^2}{x^2+y^2}\) . Tính P=M+m
(Sử dụng miền giá trị hoặc điều kiện tồn tại của nghiệm )
Với giá trị nào của m thì hai đường thẳng (d1 ) : x−my = 0,(d2 ) :mx− y =m+1 trùng nhau ?
A. m = 0. B. m khác 1. C. m = 0 hoặc m = −1. D. m = −1.
Bài 1: Tìm các giá trị của tham số m để mỗi phương trình sau có 2 nghiệm trái dấu:
\(a,\left(m^2-1\right)x^2+\left(m+3\right)x+\left(m^2+m\right)=0\)
\(b,x^2-\left(m^2+m-2\right)x+m^2+m-5=0\)
Bài 2: Tìm các giá trị của tham số m để mỗi phương trình sau có 2 nghiệm dương phân biệt:
\(a,x^2-2x+m^2+m+3=0\)
\(b,\left(m^2+m+1\right)x^2+\left(2m-3\right)x+m-5=0\)
\(c,x^2-6mx+2-2m+9m^2=0\)
Bài 1. Tìm m để f (x)=mx^2 -2(m-1)x+4m-1 luôn dương Bài 2 tìm tất cả các giá trị của tham số m để bất phương trình sau có nghiệm đúng với mọi a.5x^2-x+m>0 b.m(m+2)x^2+2mx+2>0
Tìm các giá trị của tham số m để phương trình m x 2 + 2 ( 2 m - 1 ) x + m + 2 = 0 vô nghiệm
A. 3 - 6 3 < m < 3 + 6 3
B. Không tồn tại m
C. m < 1/12
D. m ≠ 0; m < 1/12
Cho f(x)=x^2 -2(m-2)x+m+10. Định m để:
a. Phương trình f(x)=0 có một nghiệm x= 1 và tính nghiệm kia
b. Phương trình f(x)=0 có nghiệm kép. Tính nghiệm kép đó.
c. Tìm m để phương trình f(x)=0 có 2 nghiệm âm phân biệt.
d. Tìm m để f(x)<0 có nghiệm đúng với mọi xϵR