\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{100.101}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{100}-\frac{1}{101}\)
\(=1-\frac{1}{101}\)\(=\frac{101}{101}-\frac{1}{101}\)
\(=\frac{100}{101}\)
\(\frac{1}{1.2}\)+\(\frac{1}{2.3}\)+\(\frac{1}{3.4}\)+.....\(\frac{1}{100.101}\)
=\(\frac{1}{1}\)-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{4}\)+............+\(\frac{1}{100}\)-\(\frac{1}{101}\)
=1-\(\frac{1}{101}\)=\(\frac{100}{101}\)