Cho x + y + z = 1 ; x , y , z > 0
CMR : \(\frac{3}{xy+yz+zx}+\frac{2}{x^2+y^2+z^2}\) >/ 14
Cho x , y , z thuộc Z ; x,y,z khác 0 và \(\sqrt{x+y+z-2018}+\sqrt{2018\left(xy+yz+zx-xyz\right)}=0\)
Tính S = \(\frac{1}{x^{2019}}+\frac{1}{y^{2019}}+\frac{1}{z^{2019}}\)
CÁC BẠN GIẢI GIÚP MÌNH CHI TIẾT BÀI NÀY VỚI !
Đề bài trước do sơ suất nên mình đánh thiếu. Mình sửa lại đề bài cho chính xác:
Tìm x,y,z biết √(x+1) + √(y-3) + √(z-1) = 1/2 × (x+y+z)
Mình rất cám ơn nếu mấy bạn thông cảm và giúp đỡ mình :D
Cho 3 số thực x;y;z thoả :
\(\hept{\begin{cases}3\left(x+y\right)+2\left(z+1\right)=0\\3xy+1=0\end{cases}}\)
Rút gọn biểu thức sau :
\(A=\frac{x^3-y^3+\left(z+1\right)\left(x^2-y^2\right)-x+y}{\left(x-y\right)^3}\)
Làm giúp mình nha....Cảm ơn m bạn nhìu ^^
Cho x,y,z > 0 thoả x + y + z = xyz
CMR : \(\frac{x}{1+x^2}+\frac{2y}{1+y^2}+\frac{3z}{1+z^2}=\frac{xyz\left(5x+4y+3z\right)}{\left(x+y\right)\left(y+z\right)\left(x+z\right)}\)
Cảm ơn m bạn nhìu nha ^^
Cho x y z là các số thực duong thỏa mãn: \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}=1\)1
chứng minh rằng: \(\sqrt{x}+\sqrt{y}+\sqrt{z}< =\frac{3}{2}\sqrt{xyz}\)
Mong mấy bạn giúp mình câu này. Mình cảm ơn.
cho x+y+z=0 chứng minh rằng (y+z)/x +(x+z)/y +(x+y)/z +3=0
giải giúp mình nha các bạn mình đang cần gấp
Các bạn ơi giúp với
Cho 0\(\le x\le y\le z\le1\)
CMR: \(\frac{1}{1+x^2}+\frac{1}{1+y^2}+\frac{1}{1+z^2}\le\frac{3}{1+xyz}\)
Cho x,y,z là ba số thực dương thỏa mãn x+y+z = 2018
Chứng minh \(\frac{x^3}{\left(y+z\right)^2}+\frac{y^3}{\left(x+z\right)^2}+\frac{z^3}{\left(x+y\right)^2}\ge\frac{1009}{2}\)
Mong các bạn giải theo THCS nhé. Cảm ơn!
Mấy bạn ơi, giúp mình bài này với.
GPT nghiệm nguyên: x(x+3)+y(y+3)=z(z+3).Với x,y là số nguyên tố