có ai biết giải ko giải hộ mình mấy bài này với ( giải chi tiết hộ mình nhé)
1, \(2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}\)
2, \(\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}\)
3, \(\sqrt{4+\sqrt{5\sqrt{3+}5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
4, \(\sqrt{30-2\sqrt{16+6\sqrt{11+4\sqrt{4-2\sqrt{3}}}}}\)
5, \(\dfrac{\left(5\sqrt{3}+\sqrt{50}\right)\left(5-\sqrt{24}\right)}{\sqrt{75}-5\sqrt{2}}\)
6, \(\sqrt{4+\sqrt{8}.\sqrt{2+\sqrt{2}}}.\sqrt{2-\sqrt{2+\sqrt{2}}}\)
7, \(\sqrt{8\sqrt{3}-2\sqrt{25\sqrt{12}+4\sqrt{192}}}\)
Tính giá trị của biểu thức:
B=\(\frac{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}-\sqrt{2}}\)
Các bạn cho mình cả cách giải nha!
Thanks các bạn nhìu!!!!!
Bài 1: Giải phương trình sau
a, \(\sqrt[3]{x+1}+\sqrt[3]{7-x}=2\)
b, \(\sqrt[3]{x+3}-\sqrt[3]{6-x}=1\)
Bài 2: Tính giá trị của các biểu thức sau
A=\(\sqrt[3]{6\sqrt{3}+10}-\sqrt[3]{6\sqrt{3}-10}\)
B= \(\sqrt[3]{5+2\sqrt{13}}+\sqrt[3]{5-2\sqrt{13}}\)
C= \(\sqrt[3]{45+29\sqrt{2}}+\sqrt[3]{45-29\sqrt{2}}\)
D= \(\sqrt[3]{2+10\sqrt{\frac{1}{27}}}+\sqrt[3]{2-10\sqrt{\frac{1}{27}}}\)
Rút gọn các biểu thức sau:
a \(\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}\)
b \(\sqrt[3]{5+2\sqrt{13}}+\sqrt[3]{5-2\sqrt{13}}\)
c \(\sqrt[3]{\sqrt{5}+2}-\sqrt[3]{\sqrt{5}-2}\)
d \(\dfrac{10}{\sqrt[3]{9}-\sqrt[3]{6}+\sqrt[3]{4}}\left(\dfrac{1+\sqrt{2}}{\sqrt{4-2\sqrt{3}}}:\dfrac{\sqrt{3}+1}{\sqrt{2}-1}\right)\)
a) (x-\(\sqrt{x^2+5}\)) (y-\(\sqrt{y^2+5}\)) = 5 . Hãy tính giá tri biểu thức M = \(x^{2015}+y^{2015}\)
b) cho x = \(\sqrt[3]{5+2\sqrt{13}}+\sqrt[3]{5-2\sqrt{13}}\). Tính giá trị của biểu thức A= \(x^{2015}-x^{2016}+2017\)
c) Tính giá trị của biểu thức A = \(x^{2012}+2x^{2013}+3x^{^{2014}}\)với x= \(\frac{\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}+1}}\)- \(\sqrt{3-2\sqrt{2}}\)
\(A=x^{2015}-x^{2016}+2017\)\(x=\sqrt[3]{5+2\sqrt{13}}+\sqrt[3]{5-2\sqrt{13}}\)Cho Tính giá trị của biểu thức
CMR: Giá trị biểu thức là 1 số nguyên
\(\frac{\sqrt{2\sqrt{3}+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\:\sqrt{6}+\sqrt{2}}\:\:\:\)
Bài 1: Tính giá trị của biểu thức:\(\frac{1}{1\sqrt{2}+2\sqrt{1}}+\frac{1}{2\sqrt{3}+3\sqrt{2}}+\frac{1}{3\sqrt{4}+4\sqrt{3}}+...+\frac{1}{2017\sqrt{2018}+2018\sqrt{2017}}\)
Bài 2: Chứng minh rằng các biểu thức sau có giá trị là số nguyên
A = \(\left(\sqrt{57}+3\sqrt{6}+\sqrt{38}+6\right)\left(\sqrt{57}-3\sqrt{6}-\sqrt{38}+6\right)\)
B = \(\frac{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\)
1,\(\sqrt{30-2\sqrt{16+6\sqrt{11+4\sqrt{4-2\sqrt{3}}}}}\)(TÍNH GIÁ TRỊ CỦA BIỂU THỨC )
2,\(\sqrt{4+\sqrt{10+2\sqrt{5}}}\)+ \(\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
3,\(2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}\)
4,\(\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}\)
5,\(\sqrt{13+\sqrt{30+\sqrt{2+\sqrt{9+4\sqrt{2}}}}}\)
6,\(\sqrt{4+\sqrt{8}}\).\(\sqrt{2+\sqrt{2+\sqrt{2}}}\).\(\sqrt{2-\sqrt{2+\sqrt{2}}}\)
(HỘ Mk vs!MK ĐAG CẦN GẤP!THANKS...!)