\(\frac{A}{6}=\frac{1}{12\times15}+\frac{1}{15\times18}+\frac{1}{18\times21}+...+\frac{1}{87\times90}\)
\(\frac{A}{6}=\frac{1}{3}\times\left(\frac{3}{12\times15}+\frac{3}{15\times18}+\frac{3}{18\times21}+...+\frac{3}{87\times90}\right)\)
\(\frac{A}{6}=\frac{1}{3}\times\left(\frac{1}{12}-\frac{1}{15}+\frac{1}{15}-\frac{1}{18}+\frac{1}{18}-\frac{1}{21}+...+\frac{1}{87}-\frac{1}{90}\right)\)
\(\frac{A}{6}=\frac{1}{3}\times\left(\frac{1}{12}-\frac{1}{90}\right)=\frac{1}{3}\times\frac{13}{180}=\frac{13}{540}\)=> A = \(\frac{13}{90}\)