a) nếu \(5x-3\ge0\)hay \(x\ge\frac{3}{5}\) ta có \(\left|5x-3\right|=5x-3\)
nếu \(5x-3< 0\) hay \(x< \frac{3}{5}\) ta có \(\left|5x-3\right|=3-5x\)
với \(x\ge\frac{3}{5}\) ta có
\(\left|5x-3\right|=x+7\) \(< =>5x-3=x+7\)
\(< =>5x-x=7+3\)
\(< =>4x=10\)
\(< =>x=\frac{10}{4}=\frac{5}{2}\) (thoả mãn khoảng xét: \(\frac{5}{2}>\frac{3}{5}\))
với \(x< \frac{3}{5}\)ta được
\(\left|5x-3\right|=x+7\) \(< =>3-5x=x+7\)
\(< =>-5x-x=7-3\)
\(< =>-6x=4\)
\(< =>x=-\frac{4}{6}=-\frac{2}{3}\) (thoả mãn khoảng xét : \(-\frac{2}{3}< \frac{3}{5}\))
b) bạn lập bảng xét dấu rồi xét từng trường hợp là được