<=>2x^2+2x+x+1=0
<=>2x(x+1)+(x+1)=0
<=>(2x+1)(x+1)=0
<=>\(\orbr{\begin{cases}2x+1=0\\x+1=0\end{cases}}\)
<=>\(\orbr{\begin{cases}x=-\frac{1}{2}\\x=-1\end{cases}}\)
vậy..........
\(2x^2+3x+1=0.\)
\(\Rightarrow2x^2+2x+x+1=0\)
\(\Rightarrow\left(2x^2+2x\right)+\left(x+1\right)=0\)
\(\Rightarrow2x\left(x+1\right)+\left(x+1\right)=0\)
\(\Rightarrow\left(x+1\right)\left(2x+1\right)=0\)
\(\orbr{\begin{cases}x+1=0\Rightarrow x=-1\\2x+1=0\Rightarrow2x=-1\Rightarrow x=-\frac{1}{2}\end{cases}}\)
\(\Rightarrow S=\left\{-1;\frac{1}{2}\right\}\)
\(2^2\)+ \(3x\)+1
<=> \(2x^2\)+ 2x + x + 1 ( vì tách 3x = x + 2x )
<=> ( \(2x^2\)+ \(2x\) ) \(.\)( \(x\)+ \(1\) )
<=> 2 \(x\)( x + 1 ) \(.\)( \(x\)+ \(1\))
<=> (\(x\)+ 1 ) \(.\)( \(2x\)+ \(1\))
<=> \(\orbr{\begin{cases}x+1=0\\2x+1=0\end{cases}}\)<=> \(\orbr{\begin{cases}x=-1\\x=-\frac{1}{2}\end{cases}}\)
VẬY \(x\in\)\(-1,-\frac{1}{2}\)