Tính nhanh \(C=\frac{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{999}}{\frac{1}{1.999}+\frac{1}{3.997}+...+\frac{1}{997.3}+\frac{1}{999.1}}\)
Giải chi tiết cho mk nha, thanks!
Tính giá trị biểu thức sau: \(C=\frac{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{999}}{\frac{1}{1.999}+\frac{1}{3.997}+...+\frac{1}{997.3}+\frac{1}{999.1}}\)
\(ChoM=1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+...+\frac{1}{999}\\ N=\frac{1}{1.999}+\frac{1}{3.997}+...+\frac{1}{997.3}+\frac{1}{999.1}\\ Tính\frac{M}{N}\)
Tính giá trị biểu thức :
B = -1/3 + 1/3^2 - 1/3^3 +.....+1/3^100 - 1/3^101
C = (1+1/3+1/5+...+1/999)/(1/1.999 + 1/3.997 + ... + 1/997.3 + 1/999.1)
tính giá trị biểu thức 1/1.999+1/3.997+...+1/997.3+1/999.1
\(C=\frac{1}{1.999}+\frac{1}{3.997}+...+\frac{1}{997.3}+\frac{1}{999.1}\)
Tính:
A= \(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+......+\frac{1}{2^{2006}}\)
B= \(\frac{1+\frac{1}{3}+\frac{1}{5}+.....+\frac{1}{999}}{\frac{1}{1.999}+\frac{1}{3.997}+.....+\frac{1}{997.3}+\frac{1}{999.1}}\)
1.Tính
(1+1/3+1/5+...+1/999)/(1/1.999+1/3.997+...+1/999.1)
\(\frac{1+\frac{1}{3}+\frac{1}{5}+.....+\frac{1}{999}}{\frac{1}{1.999}+\frac{1}{3.997}+....\frac{1}{997.3}+\frac{1}{991.1}}\)