C1: \(\left(a+b\right)^2-\left(a-b\right)^2\)
\(=a^2+2ab+b^2-a^2+2ab-b^2=4ab\) (đpcm)
C2: \(\left(2x+3\right)^2-4\left(x-1\right)\left(x+1\right)=49\)
\(\Leftrightarrow4x^2+12x+9-4x^2+4=49\)
\(\Leftrightarrow12x+13=49\)
\(\Leftrightarrow12x=36\)
\(\Leftrightarrow x=3\)
Vậy x = 3.
Câu 1 :
\(\left(a+b\right)^2-\left(a-b\right)^2\)
= \(\left(a^2+2ab+b^2\right)-\left(a^2-2ab+b^2\right)\)
= \(a^2+2ab+b^2-a^2+2ab-b^2\)
= \(\left(a^2-a^2\right)+\left(2ab+2ab\right)+\left(b^2-b^2\right)\)
= \(4ab\)
Vậy................(đpcm)