Tìm x
a) Ta có: \(16x^2-\left(4x-5\right)^2=15\)
\(\Leftrightarrow16x^2-\left(16x^2-40x+25\right)-15=0\)
\(\Leftrightarrow16x^2-16x^2+40x-25-15=0\)
\(\Leftrightarrow40x-40=0\)
\(\Leftrightarrow40x=40\)
hay x=1
Vậy: x=1
b) Ta có: \(\left(2x+3\right)^2-4\left(x-1\right)\left(x+1\right)=49\)
\(\Leftrightarrow4x^2+12x+9-4\left(x^2-1\right)-49=0\)
\(\Leftrightarrow4x^2+12x+9-4x^2+4-49=0\)
\(\Leftrightarrow12x-36=0\)
\(\Leftrightarrow12x=36\)
hay x=3
Vậy: x=3
d) Ta có: \(2\left(x+1\right)^2-\left(x-3\right)\left(x+3\right)-\left(x-4\right)^2=0\)
\(\Leftrightarrow2\left(x^2+2x+1\right)-\left(x^2-9\right)-\left(x^2-8x+16\right)=0\)
\(\Leftrightarrow2x^2+4x+2-x^2+9-x^2+8x-16=0\)
\(\Leftrightarrow12x-5=0\)
\(\Leftrightarrow12x=5\)
hay \(x=\frac{5}{12}\)
Vậy: \(x=\frac{5}{12}\)
e) Ta có: \(\left(x-5\right)^2-x\left(x-4\right)=9\)
\(\Leftrightarrow x^2-10x+25-x^2+4x-9=0\)
\(\Leftrightarrow-6x+16=0\)
\(\Leftrightarrow6x=16\)
hay \(x=\frac{8}{3}\)
Vậy: \(x=\frac{8}{3}\)
f) Ta có: \(\left(x-5\right)^2-\left(x-4\right)\left(1-x\right)=0\)
\(\Leftrightarrow x^2-10x+25-\left(x-x^2-4+4x\right)=0\)
\(\Leftrightarrow x^2-10x+25-x+x^2+4-4x=0\)
\(\Leftrightarrow2x^2-15x+29=0\)
\(\Leftrightarrow2\left(x^2-\frac{15}{2}x+\frac{29}{2}\right)=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\frac{15}{4}+\frac{225}{16}+\frac{7}{16}=0\)
\(\Leftrightarrow\left(x-\frac{15}{4}\right)^2+\frac{7}{16}=0\)(vô lý)
Vậy: x∈∅