Áp dụng BĐT AM-GM ta có:
\(\frac{1}{\sqrt{AB}}=\frac{2}{2\sqrt{AB}}\ge\frac{2}{A+B}\)(đpcm)
p/s: tham khảo
chúc bn hk tốt
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Áp dụng BĐT AM-GM ta có:
\(\frac{1}{\sqrt{AB}}=\frac{2}{2\sqrt{AB}}\ge\frac{2}{A+B}\)(đpcm)
p/s: tham khảo
chúc bn hk tốt
Cho a,b,c là ba số dương . Chứng minh bất đẳng thức :\(\sqrt{\frac{2}{a}}+\sqrt{\frac{2}{b}}+\sqrt{\frac{2}{c}}\le\sqrt{\frac{a+b}{ab}}+\sqrt{\frac{a+c}{ac}}+\sqrt{\frac{b+c}{bc}}\)
Cho a,b,c là ba số dương . Chứng minh bất đẳng thức :\(\sqrt{\frac{2}{a}}+\sqrt{\frac{2}{b}}+\sqrt{\frac{2}{c}}\le\sqrt{\frac{a+b}{ab}}+\sqrt{\frac{a+c}{ac}}+\sqrt{\frac{b+c}{bc}}\)
câu 1
a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy:\(\frac{a+b}{2}\ge\sqrt{ab}\)
b) Cho a, b, c > 0. Chứng minh rằng:\(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\ge a+b+c\)
c) Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.
cho a+b+c=0 và a,b,c khác 0.
chứng minh hằng đẳng thức:
\(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\left|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right|\)
mn giúp với nhau, mơn nhiều
a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy: \(\frac{a+b}{2}\ge\sqrt{ab}\)
Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy: \(\frac{a+b}{2}>hoặc=\sqrt{ab}\)
Chứng minh các bất đẳng thức sau:
\(\frac{\left(a+b\right)}{2}^{^2}+\frac{a+b}{4}=a\sqrt{b}+b\sqrt{a}\)
với a,b>0
Chứng minh bất đẳng thức \(\frac{a+b}{a^2+b^2}+\frac{b+c}{b^2+c^2}+\frac{c+a}{c^2+a^2}\le3\)
với a, b,c >0 và a+b+c=ab+bc+ca
Chứng minh bất đẳng thức:
Nếu 0 < a < b thì a < \(\frac{2}{\frac{1}{a}+\frac{1}{b}}\)<\(\sqrt{ab}<\frac{a+b}{2}\)< b