\(C=1.99+2.98+3.97+........+97.3+98.2+99.1\)
\(\Rightarrow C=1.99+2.\left(99-1\right)+3\left(99-2\right)+..........+98.\left(99-97\right)+99.\left(99-98\right)\)
\(\Rightarrow C=1.99+2.99-1.2+3.99-2.3+........+98.99-97.98+99.99-98.99\)
\(\Rightarrow C=\left(1.99+2.99+.......+99.99\right)-\left(1.2+2.3+.........+98.99\right)\)
\(\Rightarrow C=490050-\left(1.2+2.3+....+98.99\right)\)
Đặt \(A=1.2+2.3+3.4+........+98.99\)
\(\Rightarrow3A=1.2.3+2.3.3+..........+98.99.3\)
\(\Rightarrow3A=1.2.3+2.3.\left(4-1\right)+.....+98.99\left(100-97\right)\)
\(\Rightarrow3A=1.2.3-1.2.3+2.3.4-2.3.4+......+97.97.99-97.98.99+98.99.100\)
\(\Rightarrow3A=98.99.100\)
\(\Rightarrow A=\dfrac{98.99.100}{3}=323400\)
\(\Rightarrow C=490050-323400=166650\)
Vậy \(C=166650\)
\(C=1.99+2.98+3.97+...+97.3+98.2+99.1\)
\(=1.99+2(99-1)+3(99-2)+...+97.(99-96)+98(99-97)+99(99-98)\)
\(=(1.99+2.99+3.99+...+97.99+98.99+99.99)-(1.2+2.3+...+96.97+97.98+98.99)\)
\(=99.(1+2+3+...+99)- (1.2+2.3+...+96.97+97.98+98.99)\)
\(=99.\frac{99.(99+1)}{2} - (1.2+2.3+...+96.97+97.98+98.99)\)
\(=490050 - (1.2+2.3+...+96.97+97.98+98.99)\)
Từ đây tính vế trong ngoặc ra rồi thực hiện trừ là oke