Tính :
\(\left(1-\frac{2}{2\cdot3}\right)\left(1-\frac{2}{3\cdot4}\right)\left(1-\frac{2}{4\cdot5}\right)\cdot...\cdot\left(1-\frac{2}{99\cdot100}\right)\)
Cần lời giải đầy đủ
Mình sẽ tick
Tính bằng cách thuận thiện:
\(\left(1+\dfrac{1}{1\cdot3}\right)\left(1+\dfrac{1}{2\cdot4}\right)...\left(1+\dfrac{1}{99\cdot101}\right)\)
Tính:
B= \(\left(1-\frac{2}{2\cdot3}\right)\) \(\left(1-\frac{2}{3\cdot4}\right)\) \(\left(1-\frac{2}{4\cdot5}\right)...\left(1-\frac{2}{99\cdot100}\right)\)
\(C=\left(1-\frac{2}{2\cdot3}\right)\cdot\left(1-\frac{2}{3\cdot4}\right)\cdot\left(1-\frac{2}{4\cdot5}\right)\cdot....\cdot\left(1-\frac{2}{99\cdot100}\right)\)
Bài 1:
a) \(\frac{1}{1}\cdot2+\frac{1}{2}\cdot3+\frac{1}{3}\cdot4+...+\frac{1}{n}\cdot\left(n+1\right)\)
b) \(\frac{1}{1}\cdot2\cdot3+\frac{1}{2}\cdot3\cdot4+\frac{1}{3}\cdot4\cdot5+...+\frac{1}{a}\cdot\left(a+1\right)\cdot\left(a+2\right)\)
tính S1
\(S_1=\frac{1}{1\cdot2\cdot3\cdot4\cdot5}\)\(+\frac{1}{2\cdot3\cdot4\cdot5\cdot6}+.................+\frac{1}{\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(2\right)}\)
Tính giá trị của biểu thức:
\(A=\frac{1}{2}\left(1+\frac{1}{1\cdot3}\right)\left(1+\frac{1}{2\cdot4}\right)\left(1+\frac{1}{3\cdot5}\right)...\left(1+\frac{1}{2017\cdot2019}\right)\)
Tính \(\frac{B}{A}\)biết
\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+....+\frac{1}{n\left(n+1\right)}+...+\frac{1}{2008\cdot2009}\)
\(B=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)}+...+\frac{1}{2008\cdot2009\cdot2010}\)
A = \(\left(1+\frac{1}{1\cdot3}\right)\cdot\left(1+\frac{1}{2\cdot4}\right)\cdot\left(1+\frac{1}{3\cdot5}\right)\cdot.....\cdot\left(1+\frac{1}{2011\cdot2013}\right)\)