dễ mà bn. chuyển 10xy sang sau đó phân tích đa thức thành nhân tử
\(P=\frac{y-x}{x+y}\)
\(\Rightarrow P^2=\frac{3\left(y-x\right)^2}{3\left(x+y\right)^2}\)
\(P^2=\frac{3\left(y^2-2xy+x^2\right)}{3\left(x^2+2xy+y^2\right)}\)
\(P^2=\frac{3x^2+3y^2-6xy}{3x^2+3y^2+6xy}\)
Thay \(3x^2+3y^2=10xy\)vào \(P^2=\frac{3x^2+3y^2-6xy}{3x^2+3y^2+6xy}\) ta được :
\(P^2=\frac{3x^2+3y^2-6xy}{3x^2+3y^2+6xy}\)
\(P^2=\frac{10xy-6xy}{10xy+6xy}\)
\(P^2=\frac{4xy}{16xy}\)
\(P^2=\frac{1}{4}\)
\(\Leftrightarrow P=\frac{1}{2}\)
Vậy \(P=\frac{y-x}{x+y}=\frac{1}{2}\Leftrightarrow\hept{\begin{cases}x>y>0\\3x^2+3y^2=10xy\end{cases}}\)