x2+y2+z2+2x-4y+6z=-14
=>x2+y2+z2+2x-4y+6z+14=0
=>(x2+2x+1)+(y2-4y+4)+(z2+6z+9)=0
=> (x+1)2+(y-2)2+(z+3)2=0
ta có:
(x+1)2≥0
(y-2)2≥0
(z+3)2≥0
=>(x+1)2+(y-2)2+(z+3)2≥0
dấu "=" xảy ra khi và chỉ khi ; x+1=y-2=z+3=0
=>\(\hept{\begin{cases}x=-1\\y=2\\z=-3\end{cases}}\)
=> x+y+z=-1+2+(-3)=-2