\(x^2-2y^2=xy\Rightarrow x^2-y^2=xy+y^2\)
\(\left(x-y\right)\left(x+y\right)=y\left(x+y\right)\)
\(\Rightarrow x-y=y\)
\(x=2y\)
Thay \(x=2y\)
\(\frac{x+y}{x-y}=\frac{2y+y}{2y-y}=\frac{3y}{y}=3\)
\(x^2-2y^2=xy\Rightarrow x^2-y^2=xy+y^2\)
\(\left(x-y\right)\left(x+y\right)=y\left(x+y\right)\)
\(\Rightarrow x-y=y\)
\(x=2y\)
Thay \(x=2y\)
\(\frac{x+y}{x-y}=\frac{2y+y}{2y-y}=\frac{3y}{y}=3\)
tính giá trị A=\(\frac{x-y}{x+y}\) biết \(x^2-2y^2=xy\left(y\ne0,x+y\ne0\right)\)
tính giá trị của biểu thức ; \(P=\frac{x-y}{x+y}\) . biết x2-2y2=xy và \(x+y\ne0;y\ne0\)
Tính giá trị của biểu thức
\(P=\frac{x-y}{x+y}\). Biết \(x^2-2y^2=xy\left(x+y\ne0;y\ne0\right)\)
Tính x+y và x-y biết:
\(x^2-2y^2=xy\)và\(y\ne0;x+y\ne0\)
Biết \(x^2-2y^2=xy\) và \(y\ne0;x+y\ne0\). Thì giá trị của biểu thức \(Q=\frac{x+y}{x-y}\)bằng bao nhiêu
Tính giá trị của biểu thức: \(A=\frac{x-y}{x+y}\)
biết \(x^2-2y^2=xy\) \(\left(y\ne0;x+y\ne0\right)\)
cho \(x^2-2y^2=xy\)
tính \(A=\frac{x-y}{x+y}\)
với \(x+y\ne0\)và \(y\ne0\)
Rút gọn phân thức P=\(\frac{2}{x}-\left(\frac{x^2}{x^2+xy}+\frac{y^2-x^2}{xy}-\frac{y^2}{xy+y^2}\right).\frac{x+y}{x^2+xy+y^2}\) với \(x\ne0,y\ne0,x\ne-y\)
Cho \(x\ne0\),\(y\ne0\) và x+y=1. Tính\(B=\frac{x}{y^3-1}-\frac{y}{x^3-1}+\frac{2\left(x-y\right)}{x^2y^2+3}\)