C = \(\dfrac{2x+\left(x-y\right)}{2x+13}+\dfrac{3y-x}{2y-\left(x-y\right)}\)
C = \(\dfrac{2x+13}{2x+13}+\dfrac{3y-x}{2y-x+y}\)
C = \(1+\dfrac{3y-x}{3y-x}\)
C = 1+1
C = 2
C = \(\dfrac{2x+\left(x-y\right)}{2x+13}+\dfrac{3y-x}{2y-\left(x-y\right)}\)
C = \(\dfrac{2x+13}{2x+13}+\dfrac{3y-x}{2y-x+y}\)
C = \(1+\dfrac{3y-x}{3y-x}\)
C = 1+1
C = 2
Cho tỉ lệ thức \(\dfrac{x}{y}=\dfrac{2}{3}\). Tính giá trị của các biểu thức sau:
\(A=\dfrac{x+5y}{3x-2y}-\dfrac{2x-3y}{4x+5y}\)
\(B=\dfrac{2x^2-xy+3y^2}{3x^2+2xy+y^2}\)
a, \(\dfrac{x}{6}=\dfrac{y}{-3}\) và x - y = 27
b,
\(\dfrac{x}{8}=\dfrac{y}{1,5}\) và x - 4y = -0,2
c, \(\dfrac{x}{y}=\dfrac{11}{13}\) và 2x + 3y = 122
d, 3x - 2y = 42 và \(\dfrac{x}{y}=\dfrac{5}{-3}\)
e, 3x = 5y và y - x = -10,2
Bài 2 :
a) Tìm các số nguyên x,y biết rằng \(\dfrac{x}{7}-\dfrac{1}{2}=\dfrac{y}{y+1}\)
b) Cho \(\dfrac{x}{3}=\dfrac{y}{4}\) và \(\dfrac{y}{5}=\dfrac{z}{6}\). Tính A = \(\dfrac{2x+3y+4z}{3x+4y+5z}\)
c) Tìm giá trị nhỏ nhất của biểu thức B, biết rằng
\(B=\left|7x-5y\right|+\left|2z-3x\right|+\left|xy+yz+zx-2000\right|\)
Cho bt A= 13*(x-2y)/2x+3y . Giá trị của biểu thức A khi x/2=y/3 và x,y khác 0 là
\(\dfrac{x^3-4x^2y+3y^2-4}{3x^3-3y^2-3y}\) tính giá trị biểu thức B khi x=\(\dfrac{1}{2}\) ; y=-1
Tính giá trị biểu thức: (3x-y) /(2x+5)=(3y-x) /(2y-5) biết x-y=5
Tìm giá trị của x và y biết:
a/ 3x + 5y = 13 và y= x +1
b/ 2x - 3y = 4 và x = y+5
c/ -x +5y = -6 và y = x-2
Bài 1: Cho \(\dfrac{3a+b+2c}{2a+c}=\dfrac{a+3b+c}{2b}=\dfrac{a+2b+2c}{b+c}\). Tính giá trị biểu thức A=\(\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
Bài 2: Cho x; y; z ≠ 0 và \(\dfrac{x+3y-z}{z}=\dfrac{y+3x-x}{x}=\dfrac{z+3x-y}{y}\). Tính P=\(\left(\dfrac{x}{y}+3\right)\left(\dfrac{y}{z}+3\right)\left(\dfrac{z}{x}+3\right)\)
Cứu tui với :<
Bài 1: Cho \(\dfrac{3a+b+2c}{2a+c}=\dfrac{a+3b+c}{2b}=\dfrac{a+2b+2c}{b+c}\). Tính giá trị biểu thức A=\(\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
Bài 2: Cho x; y; z ≠ 0 và \(\dfrac{x+3y-z}{z}=\dfrac{y+3x-x}{x}=\dfrac{z+3x-y}{y}\). Tính P=\(\left(\dfrac{x}{y}+3\right)\left(\dfrac{y}{z}+3\right)\left(\dfrac{z}{x}+3\right)\)