Gọi (S ) là khối cầu bán kính R, (N) là khối nón có bán kính đáy R và chiều cao h. Biết rằng thể tích của khối cầu (S) và khối nón (N) bằng nhau, tính tỉ số h R .
C. 12
D. 4
Cho mặt cầu S (O;R) và (P) cách O một khoảng bằng h (0 <H<R) . Gọi (L) là đường tròn giao tuyến của mặt cầu (S) và (P) có bán kính r. Lấy A là một điểm cố định thuộc (L). Một góc vuông xAy trong (P) quay quanh điểm A. Các cạnh Ax, Ay cắt (L) ở C và D. Đường thẳng đi qua A và vuông góc với (P) cắt mặt cầu ở B. Diện tích tam giác BCD lớn nhất bằng:
Một hình trụ có tâm các đáy là A,B. Biết rằng mặt cầu đường kính AB tiếp xúc với các mặt, đáy của hình trụ tại A,B và tiếp xúc với mặt xung quanh của hình trụ đó. Diện tích của mặt cầu này là 16 π . Tính diện tích xung quanh của mặt trụ đã cho.
A . 16 π 3
B . 16 π
C . 8 π
D . 8 π 3
Khi cắt mặt cầu S (O; R) bởi một mặt kính đi qua tâm O, ta được hai nửa mặt cầu giống nhau. Giao tuyến của mặt kính đó với mặt cầu gọi là mặt đáy của mỗi nửa mặt cầu. Một hình trụ gọi là nội tiếp nửa mặt cầu S (O; R) nếu một đáy của hình trụ nằm trong đáy của nửa mặt cầu, còn đường tròn đáy kia là giao tuyến của hình trụ với nửa mặt cầu. Biết R = 1, tính bán kính đáy r và chiều cao h của hình trụ nội tiếp nửa mặt cầu S(O; R) để khối trụ có thể tích lớn nhất.
Một hình nón có bán kính đáy bằng 1 và có thiết diện qua trục là một tam giác vuông cân. Tính diện tích xung quanh của hình nón.
Một hình trụ có hai đường tròn đáy nằm trên một mặt cầu bán kính R và có đường cao bằng bán kính mặt cầu. Diện tích toàn phần hình trụ đó bằng
Một hình trụ có hai đường tròn đáy nằm trên một mặt cầu bán kính R và có đường cao bằng bán kính mặt cầu. Diện tích toàn phần hình trụ đó bằng
Cắt một khối trụ bởi một mặt phẳng qua trục của nó, ta được thiết diện là một hình vuông có cạnh bằng 3a Tính diện tích toàn phần của khối trụ
Cho mặt cầu (S) có bán kính R. Một hình trụ có chiều cao h và bán kính đáy r thay đổi nội tiếp mặt cầu. Tính chiều cao h theo R sao cho diện tích xung quanh của hình trụ lớn nhất.