Biết n! = 1.2.3. ... . n ( n \(\in\)N* )
Chứng tỏ rằng:
A = \(\frac{1}{2!}+\frac{2}{3!}+...+\frac{2013}{2014!}< 1\)
biết n! = 1.2.3....n (n thuộc N, n\(\ge\)2). chứng tỏ rằng A = \(\frac{1}{2}\)+\(\frac{2}{3}\)+ ....+ \(\frac{2013}{2014}\)< 1
Cho A = \(1.2.3...2013.2014\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}+\frac{1}{2014}\right)\). Chứng minh rằng A chia hết cho 2015
Tìm x biết
\(\left(\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2014}+\frac{1}{2015}\right).x=\frac{2014}{1}+\frac{2013}{2}+\frac{2012}{3}+...+\frac{2}{2013}+\frac{1}{2014}\)
Biết n!=1.2.3...n \(\left(n\inℕ^∗;n\ge2\right)\)và \(A=\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+......+\frac{2014}{2015!}\)
Hãy so sánh A với 1
TínhTính giá trị của A, biết A=
\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}}{\frac{2013}{1}+\frac{2012}{2}+\frac{2011}{3}+...+\frac{1}{2013}}\)
\(A=\frac{\left(1-2\right).\left(1+2\right)}{2^2}.\frac{\left(1-3\right).\left(1+3\right)}{3^2}.......\frac{\left(1-2013\right).\left(1+2013\right)}{2013^2}.\frac{\left(1-2014\right).\left(1+2014\right)}{2014^2}\)
chung to A=\(\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{2013!}<2\)
(n!=1.2.3....n duoc goi la giai thua)
So sánh M = \(\frac{2014}{1.2.3}+\frac{2014}{2.3.4}+\frac{2014}{3.4.5}+.....+\frac{2014}{2012.2013.2014}\) và N= 2013