Ta có \(A=\frac{1}{2!}+\frac{2}{3!}+...+\frac{2014}{2015!}\)
=> \(A=\frac{2-1}{2!}+\frac{3-1}{3!}+...+\frac{2015-1}{2015!}\)
=> \(A=\frac{2}{2!}-\frac{1}{2!}+\frac{3}{3!}-\frac{1}{3!}+...+\frac{2015}{2015!}-\frac{1}{2015!}\)
=> \(A=1-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+...+\frac{1}{2014!}-\frac{1}{2015!}\)
=> \(A=1-\frac{1}{2015!}< 1\)