Ta có \(a+bc=a\left(a+b+c\right)+bc=\left(a+b\right)\left(a+c\right)\)
\(b+ac=\left(b+a\right)\left(b+c\right)\)
\(c+ab=\left(a+b\right)\left(c+b\right)\)
Đặt \(a+b=x;b+c=y;a+c=z\)=> \(x+y+z=2\)
Khi đó \(P=\frac{xy}{z}+\frac{yz}{x}+\frac{xz}{y}\)
Áp dụng BĐT cosi \(\frac{xy}{z}+\frac{yz}{x}\ge2y\); \(\frac{yz}{x}+\frac{xz}{y}\ge2z\);\(\frac{xy}{z}+\frac{xz}{y}\ge2z\)
Cộng 3 BĐT trên
=> \(P\ge x+y+z=2\)
Vậy MinP=2 khi a=b=c=1/3