Bài 1: Cho phân số \(A=\frac{6n-4}{2n+3}\); n là số nguyên
a) Tìm n để A nhận được giá trị là số nguyên
b) Tìm n để A rút gọn được.
c) Tìm n để A đạt GTLN và tính giá trị đó.
Bài 2: Cho phản số \(B=\frac{4n+1}{2n-3}\); n là số nguyên
a) Tìm n để B có giá trị là số chính phương
b) Tìm n để B là phân số tối giản
c) Tìm n để B đạt GTNN? GTLN? Tính các giá trị đó
Bài 3: Cho phân số \(C=\frac{8n+193}{4n+3}\); n là số nguyên
a) Tìm n để C có giá trị là số nguyên tố
b) Tìm n để C là phân số tối giản
c) Với giá trị nào của n từ khoảng 150 đến 170 thì phân số C rút gọn được
d) Tìm n để C đạt GTNN? GTLN? Tính các giá trị đó
Cho phân số B= 4n+1/2n-3, ( n thuộc Z)
a) Tìm n để B có giá trị là số chính phương
b) Tìm n để B là phân số tối giản
c) Tìm n để B đạt GTLN
\(\dfrac{ }{ }\)Tìm n để các phân số sau là phân số tối giản:
a) 7n+1/14n+3
b) 2n+7/3n+10
c)2n+3/4n+4
Cho A= 3n-5/2n+1(n€Z).
a. Tìm n để A có giá trị nguyên.
b. Tìm n để A là phân số tối giản.
c. Tìm n để A là phân số rút gọn được.
d. Tìm GTLN, GTNN của A.
Cho phân số B = \(\frac{4n+1}{2n-3}\), n thuộc Z
a, Tìm n để B là p/s tối giản
b, Tìm n để B đạt giá trị nhỏ nhất, giá trị lớn nhất và tính các giá trị đó
Bài 1
Cho A = n-2/n+3 ( n thuộc Z)a, tìm n để A là phân số
b, Tìm n để a nguyên
c, tìm n để A đạt giá trị lớn nhất
Bài 2
Cho A = 10*n/5*n-3.Tìm n để
a, A là phân số
b,n thuộc Z để a nguyên
c, Tìm giá trị lớn nhất của A
Bài 3
Chứng minh rằng xảy n thuộc Z ta có
a,12n+1/n-2 là phân số tối giản
b,2n-3/n-2 là phân số tối giản
c, UWCLN của ( 2n+1;3n+1)=1
Bài 4
Tìm n thuộc Z để ( n^2-n-1) chia hết cho ( n-1)
1.a)Chứng tỏ rằng:\(\dfrac{2n+5}{n+3}\)(nϵN) là phân số tối giản.
b)Tìm các giá trị nguyên của n để phân số B=\(\dfrac{2n+5}{n+3}\) có giá trị là số nguyên.
2.Ở lớp 6A,số học sinh giỏi học kì I bằng \(\dfrac{3}{7}\) số còn lại.Cuối năm có thêm 4 học sinh đạt loai giỏi bằng \(\dfrac{2}{3}\) số còn lại.Tính số học sinh của lớp 6A ?
Bài 1: Cho A = n+10/2n+8
a) TÌm n thuộc Z để A là phân số
b) Tìm n thuộc Z để A thuộc Z
Bài 2: TÌm n thuộc Z để 2n+3/4n+1 là phân số tối giản
A=\(\dfrac{n+1}{n-3}\) (n∈Z)
a)Tìm n để A là phân số b)Tìn n để A là phân số tối giản c)Tìm n để A có giá trị lớn nhất