\(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2013^2}\)
Ta có ;
\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)
...
\(\dfrac{1}{2013^2}< \dfrac{1}{2012.2013}\)
\(\Rightarrow B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2013^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2012.2013}\)
\(\Rightarrow B< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2012}-\dfrac{1}{2013}\)
\(\Leftrightarrow B< 1-\dfrac{1}{2013}\)
\(\Rightarrow B< \dfrac{2012}{2013}\)
Lại có : \(\dfrac{2012}{2013}< \dfrac{3}{4}\)
\(\Rightarrow B< \dfrac{3}{4}\)
* Chắc vậy, sai thì thôg cảm ^^ *
Còn j k hiểu thì ib nha