Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

Bằng cách sử dụng hằng đẳng thức a2 - b2 = (a - b)(a + b) hãy xét dấu f(x) = x4 - x2 + 6x - 9 và  g x   =   x 2   -   2 x   -   4 x 2   -   2 x

Cao Minh Tâm
20 tháng 8 2019 lúc 17:05

Ta có:

f(x) = x4 – x2 + 6x – 9 = x4 – (x2 – 6x +9) = – (x-3)2

= (x2 –x + 3).(x2 + x - 3)

+ Tam thức x2 – x + 3 có Δ = -11 < 0, a = 1 > 0 nên x2 – x + 3 > 0 với ∀ x ∈ R.

+ Tam thức x2 + x – 3 có hai nghiệm Giải bài 11 trang 107 SGK Đại Số 10 | Giải toán lớp 10

Ta có bảng xét dấu sau:

Giải bài 11 trang 107 SGK Đại Số 10 | Giải toán lớp 10

Kết luận:

Giải bài 11 trang 107 SGK Đại Số 10 | Giải toán lớp 10

Tam thức x2 - 2x + 2 có Δ = -4 < 0, hệ số a = 1 > 0 nên x2 - 2x + 2 > 0 với ∀ x ∈ R

Tam thức x2 - 2x - 2 có hai nghiệm là x1 = 1 - √3; x2 = 1 + √3.

Tam thức x2 - 2x có hai nghiệm là x1 = 0; x2 = 2

Ta có bảng xét dấu :

Giải bài 11 trang 107 SGK Đại Số 10 | Giải toán lớp 10

Kết luận : g(x) < 0 khi x ∈ (1 - √3; 0) ∪ (2; 1 + √3)

g(x) = 0 khi x = 1- √3 hoặc x = 1 + √3

g(x) > 0 khi x ∈ (-∞; 1 - √3) ∪ (0; 2) ∪ (1 + √3; +∞)

g(x) không xác định khi x = 0 và x = 2.


Các câu hỏi tương tự
Nguyen Yen Chi
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
trương tấn thanh
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Nguyễn Văn Cường
Xem chi tiết
Nguyễn Linh Anh
Xem chi tiết
Lê Minh Thuận
Xem chi tiết