Ta phải giả sử x,y,z khác 0
gt: (yc-bz)/x=(za-xc)/y =>
(c/z-b/y)/zx^2=(a/x-c/z)/zy^2 hay:
(c/z-b/y)/x^2=(a/x-c/z)/y^2 (*)
mặt khác từ gt:
(yc-bz)/x=(xb-ya)/z =>
(c/z-b/y)/yx^2=(b/y-a/x)/yz^2 hay:
(c/z-b/y)/x^2=(b/y-a/x)/z^2 (**)
*nếu: c/z-b/y>0
<=>c/z>b/y
Theo (*) ta có:
a/x-c/z>0
<=>a/x>c/z
=>a/x>c/z>b/y
=>b/y-a/x<0 vô lí vì từ (**) :
b/y-a/x>0
*nếu: c/z-b/y<0
<=>c/z<b/y
Theo (*) ta có:
a/x-c/z<0
=>a/x<c/z
=>a/x<c/z<b/y.
=>b/y-a/x>0. vô lí vì theo (**) => b/y-a/x<0
Vậy ta phải có:
c/z-b/y=0
Thay vào (*) ta có:
a/x=b/y=c/z.
Ta có:
yc-bz/x = za-xc/y=xb-ya/z=k
=> xyc-xbz/x^2=zya-xyc/y^2=zxb-zya/z^2=k
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
xyc-xbz/x=zya-xyc/y=zxb-zya/z=xyc-xbz+zya-xyc+zxb-zya/x^2+y^2+z^2 ( x^2+y^2+z^2 >0, vì x,y,z khác 0)
= [(xyc-xyc)+(-xbz+zxb)+(zya-zya)]/x^2+y^2+z^2=0/x^2+y^2+z^2=k
=>k=0
=> yc-bz/x=0 => yc-bz=0 => yc=bz => c/z=b/y (1)
za-xc/y=0 => za-xc=0 => za=xc => a/x=c/z (2)
Từ (1) và (2) => a/x =b/y=c/z
Nhìn cách giải thế thôi chứ giải ra giấy ngắn lắm bạn nhé !