a) = \(\frac{1+2+3+..+11}{3}=\frac{\left(1+11\right)+\left(2+9\right)+..+\left(5+7\right)+6}{3}=\frac{12.5+6}{3}=\frac{66}{3}=22\)
b) A = \(9+\frac{9}{2}+\frac{9}{4}+\frac{9}{8}+...+\frac{9}{128}+\frac{9}{256}\)
2 x A = 18 + 9 + \(\frac{9}{2}+\frac{9}{4}+\frac{9}{8}+...+\frac{9}{128}\)
Lấy 2 x A - A = 18 - \(\frac{9}{256}\)
A = 4599/256
c) \(B=\frac{5}{1\times3}+\frac{5}{3\times5}+\frac{5}{5\times7}+...+\frac{5}{101\times103}\)
\(B=\frac{5}{2}\times\left(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+...+\frac{25}{101\times103}\right)\)
\(B=\frac{5}{2}\times\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{101}-\frac{1}{103}\right)=\frac{5}{2}\times\left(1-\frac{1}{103}\right)\)= 255/103