a) Xét \(\Delta ABD\) và \(\Delta EBD:\)
BD chung.
\(\widehat{ABD}=\widehat{EBD}\) (BD là phân giác \(\widehat{B}).\)
\(\Rightarrow\Delta ABD=\Delta EBD\) (cạnh huyền - góc nhọn).
\(\Rightarrow\widehat{BAD}=\widehat{BED}\) (2 góc tương ứng).
Mà \(\widehat{BAD}=90^o\left(\widehat{BAC}=90^o\right).\)
\(\Rightarrow\widehat{BED}=90^o.\)
\(b)\Delta ABD=\Delta EBD\left(cmt\right).\\ \Rightarrow AB=EB.\)
Xét \(\Delta ABE:\)
\(AB=EB\left(cmt\right).\)
\(\Rightarrow\Delta ABE\) cân tại B (Tính chất tam giác cân).
Xét \(\Delta ABE\) cân tại B:
BD là phân giác \(\widehat{B}\left(gt\right).\)
\(\Rightarrow\) BD là trung trực của AE (Tính chất các đường trong tam giác cân).