CHo hình bình hành ABCD , trên cạnh AB và CD lần lượt lấy các điểm M , K sao cho AM = CK . lấy P thuộc AD ( P khác A; D ) Nối PB ; PC cắt MK tại E và F . CM \(S_{PEF}=S_{BME}+S_{CKF}\)
cho hình bình hành ABCD, trên cạnh AB và CD lần lượt lấy các điểm M,K sao cho AM=CK. Lấy điểm P nằm trên cạnh AD (P khác A,D). Nối PB, PC cắt MK tại E,F. Chứng minh: S(PEF)=S(BME)+S(CKF), S là diện tích
Bài 4: Cho tam giác ABC vuông tại A có đường cao AH, biết AB=3cm. AC=4cm, trên cạnh AB lấy điểm I sao IA=2IB. Đoạn CI cắt AH tại điểm D. Tính dài đoạn thẳng CD
Bài 5: Cho tam giác đều ABC, điểm M nằm trong tam giác ABC sao cho AM^2=BM^2 + CM^2. Tính số đo góc BMC
Bài 6: Cho hình bình hành ABCD. Trên các cạnh BC và AB ta lấy lần lượt hai điểm M và N sao cho AM=CN. Chứng minh SADC = SCDN từ đó suy ra D cách đều AM và CN
Cho hình chữ nhật ABCD (AB>BC) .Lấy điểm E trên AD ,lấy điểm F,K trên CD sao cho DF=CK (F nằm giữa D và K ) .Vẽ đường thẳng vuông góc với EK tại K cắt BC tại M . Chứng minh : góc EAM =90*
Cho hbh ABCD , trên cạnh AB lấy M , trên cạnh CD lấy N sao cho AM=CN.AN cắt DM tại E ,BN cắt chứng minh tại F .C/M
a, tứ giác AMCN là hình bình hành
b, DM//BN
c,EF ,MN và AC đồng quý
Bài 1 : Cho hình vuông ABCD có cạnh bằng 3 cm . Chứng minh rằng : 4 đỉnh của hình vuông ABCD cùng nằm trên 1 đường tròn . Hãy tính bán kính đường tròn đó
Bài 2 : Cho tam giác nhọn ABC . Vẽ đường tròn tâm O , bán kính BC , nó cắt các cạnh AB, AC theo thứ tự ở D và E
a)CMR: CD vuông góc với AB , BE vuông góc với AC
b) gọi K là giao điểm của BE và CD. Chứng minh AK vuông góc BC
Bài 3:Cho hình thang ABCD , AB//CD, AB<CD , có góc C=góc D=60 độ , CD=2AD . Chứng minh 4 điểm A, B, C, D cùng thuộc 1 đường tròn. Tính diện tích đường tròn đó biết CD=4cm
Bài 4:Cho tam giác ABC vuông tại A. Trên AB, AC lần lượt lấy các điểm D, E . Gọi M, N, P, Q lần lượt là trung điểm của DE , EB, BC, CD. Chứng minh 4 điểm M, N, P, Q cùng thuộc 1 đường tròn
Cho tam giác ABC. Trên cạnh BC lấy điểm M bất kì. Trên đoạn AM lấy điểm K bất kì. Đường thẳng BK và CK cắt cạnh AC và AB lần lượt tại N và P. Qua K kẻ đường thẳng song song với BC cắt MP và MN tại E và F. CMR: I là trung điểm EF.
1 , Cho hình vuông ABCD có góc A = góc D = 90 độ và cạnh AB = \(\frac{1}{2}\)CD . H là hình chiếu vuông góc của D lên canh AC . Điểm M , N là trung điểm của HC và HD
a , Chứng minh rằng ABMN là hình bình hành .
b , Chứng minh rằng N là trực tâm của tam giác AMD
c , Chứng minh rằng góc BMD = 90 độ
d , Biết CD = 16 cm , AD = 6 cm . Tính diện tích hình thang ABCD .
2 , Cho hình bình hành ABCD có góc A < 90 độ . Hai đường chéo AC , BD cắt nhau tại O . Vẽ DE , DF lần lượt vuông góc với AB và BC . Chứng minh rằng tam giác EOF cân.
3 , Cho hình thang ABCD có góc A = 60 độ . Trên tia AD lấy M , trên tia Bc lấy N sao cho AM = DN
a , Chứng minh rằng tam giác ADM = tam giác DBN
b , Chứng minh rằng góc MBN = 60 độ
c , Chứng minh rằng tam giác BNM đều .
4 , Cho hình vuông ABCD , vẽ góc xAy = 90 độ . Ax cắt BC ở M , Ay cắt CD ở N
a , Chứng minh rằng tam giác MAN vuông cân
b , Vẽ hình bình hành AMFN có O là giao điểm 2 đường chéo . Chứng minh rằng OA = OC = \(\frac{1}{2}\) AF và tam giác ACF vuông tại C .
5 , Cho hình vuông ABCD . Trên BC lấy điểm E . Từ A kẻ vuông góc với AE cắtt CD tạ F . Gọi I là trung điểm của EF . M là giao điểm của AI và CD . Qua E kẻ đường thẳng song song với CD cắt AI tại N .
a , Chứng minh rằng MENF là hình thang
b , Chứng minh rằng chu vi tam giác CME không đổi khi E chuyển động trên BC .
Cho hình vuông ABCD có cạnh a trên các cạnh BC;CD lần lượt lấy các điểm M;N sao cho CM+CN+MN = 2a đường chéo BD cắt AM và AN tại P và Q chứng minh rằng các đọan BP;PQ; QD là độ dài 3 cạnh của tam giác vuông