33+1=3(3−1)(3+1)(3−1)=33−3.1(3)2−12" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:19.36px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">
33−33−1=33−32" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:19.36px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">
.23−1=2(3+1)(3−1)(3+1)=2(3+1)(3)2−12" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:19.36px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">
2(3+1)3−1=2(3+1)2=3+1" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:19.36px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">
.2+32−3=(2+3).(2+3)(2−3)(2+3)=(2+3)222−(3)2" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:19.36px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">
22+2.2.3+(3)24−3" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:19.36px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">
7+431=7+43" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:19.36px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">
.b3+b=b(3−b)(3+b)(3−b)" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:19.36px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">
b(3−b)32−(b)2=b(3−b)9−b;(b≠9)" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:19.36px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">
.p2p−1=p(2p+1)(2p−1)(2p+1)" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:19.36px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">
p(2p+1)(2p)2−12=p(2p+1)4p−1" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:19.36px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">
#Ye Chi-Lien
\(\frac{3}{\sqrt{3}+1}=\frac{3\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}=\frac{3\sqrt{3}-3}{3-1}=\frac{3\sqrt{3}-3}{2}\)
\(\frac{2}{\sqrt{3}-1}=\frac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}=\frac{2\left(\sqrt{3}+1\right)}{3-1}=\sqrt{3}-1\)
\(\frac{2+\sqrt{3}}{2-\sqrt{3}}=\frac{\left(2+\sqrt{3}\right)^2}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)=4-3}=\left(2+\sqrt{3}\right)^2=4+4\sqrt{3}+3=7+4\sqrt{3}\)
\(\frac{b}{3+\sqrt{b}}=\frac{b\left(3-\sqrt{b}\right)}{\left(3+\sqrt{b}\right)\left(3-\sqrt{b}\right)}=\frac{b\left(3-\sqrt{b}\right)}{9-b}\)
\(\frac{p}{2\sqrt{p}-1}=\frac{p\left(2\sqrt{p}+1\right)}{\left(2\sqrt{p}-1\right)\left(2\sqrt{b}+1\right)}=\frac{p\left(2\sqrt{b}+1\right)}{4p-1}\)
+) .
+) .
+) .
+) .
+)
+) .
+) .
+) .
+) .
+)
\(\dfrac{3}{\sqrt{3}+1}=\dfrac{3(\sqrt{3}-1)}{3-1}=\dfrac{3\sqrt{3}-3}{2}\)
\(\dfrac{2}{\sqrt{3}-1}=\dfrac{2\left(\sqrt{3}+1\right)}{3-1}=\dfrac{2\sqrt{3}+2}{2}=\sqrt{3}+1\)
\(\dfrac{2+\sqrt{3}}{2-\sqrt{3}}=\dfrac{4+4\sqrt{3}+3}{4-3}=4+4\sqrt{3}+3\)
\(\dfrac{b}{3+\sqrt{b}}=\dfrac{b\left(3-\sqrt{b}\right)}{9-b}=\dfrac{3b-b\sqrt{b}}{9-b}\)
\(\dfrac{p}{2\sqrt{p}-1}=\dfrac{p\left(2\sqrt{p}+1\right)}{4p-1}=\dfrac{2p\sqrt{p}+p}{4p-1}\)
\(\dfrac{3}{\sqrt{3}+1}=\dfrac{3\left(\sqrt{3}-1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}=\dfrac{3\left(\sqrt{3}-1\right)}{\left(\sqrt{3}\right)^2-1}=\dfrac{3\left(\sqrt{3}-1\right)}{3-1}\dfrac{3\left(\sqrt{3}-1\right)}{2}\)
\(\dfrac{2}{\sqrt{3}-1}=\dfrac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}=\dfrac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}\right)^2-1}=\dfrac{2\left(\sqrt{3}+1\right)}{3-1}=\sqrt{3}+1\)
\(\dfrac{2+\sqrt{3}}{2-\sqrt{3}}=\dfrac{\left(2+\sqrt{3}\right)\left(2+\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}=\dfrac{4+4\sqrt{3}+3}{2^2-\left(\sqrt{3}\right)^2}=\dfrac{7+4\sqrt{3}}{4-3}=7+4\sqrt{3}\)
\(\dfrac{p}{2\sqrt{p}-1}=\dfrac{p\left(2\sqrt{p}+1\right)}{\left(2\sqrt{p}+1\right)\left(2\sqrt{p}-1\right)}=\dfrac{2p\sqrt{p}+p}{\left(2p\right)^2-1}=\dfrac{2p\sqrt{p}+p}{4p-1}\)
\(\dfrac{b}{3+\sqrt{b}}=\dfrac{b\left(3-\sqrt{b}\right)}{\left(3+\sqrt{b}\right)\left(3-\sqrt{b}\right)}=\dfrac{b\left(3-\sqrt{b}\right)}{3^2-\left(\sqrt{b}\right)^2}=\dfrac{b\left(3-\sqrt{b}\right)}{9-b}\)
\(\dfrac{3\sqrt{3}-3}{2}\);\(\dfrac{2\sqrt{3}+2}{2}\);\(7+4\sqrt{3}\);\(\dfrac{b\sqrt{b}-3b}{b-9}\);\(\dfrac{2p\sqrt{p}+p}{4p-1}\)
+) .
+) .
+) .
+) .
+) .
+) .
+) .
+) .
+) .
+) .
a\(\dfrac{3\left(\sqrt{3}-1\right)}{2}\)b\(\sqrt{3}+1\)c7+\(4\sqrt{3}\)d\(\dfrac{3b-b\sqrt{b}}{3-b}\)e\(\dfrac{p\left(\sqrt{p}+1\right)}{2\left(p-1\right)}\)
+) 3√3+1=3(√3−1)(√3+1)(√3−1)=3(√3−1)3−1=3(√3−1)2.
+) 2√3−1=2(√3+1)(√3−1)(√3+1)=2(√3+1)3−1=√3+1.
2=7+4√3.
2=b(3−√b)9−b.
2=2p.√p+p4p−1