a: \(x^{n}\cdot y^{n+2}\left(xy+x^2y+1\right)\)
\(=x^{n}\cdot y^{n+2}\cdot xy+x^{n}\cdot y^{n+2}\cdot x^2y+x^{n}y^{n+2}\)
\(=x^{n+1}\cdot y^{n+3}+x^{n+2}\cdot y^{n+3}+x^{n}y^{n+2}\)
b: \(\left(4x^{n-2}+x^{n+1}\right)\cdot x^{n}\)
\(=4x^{n-2}\cdot x^{n}+x^{n+1}\cdot x^{n}\)
\(=4x^{2n-2}+x^{2n+1}\)
c: \(4xy\left(x^{n-2}y^{n+1}+x^{n}y^{n+1}\right)\)
\(=4xy\cdot x^{n-2}\cdot y^{n+1}+4xy\cdot x^{n}y^{n+1}\)
\(=4x^{n-1}y^{n+2}+4x^{n+1}\cdot y^{n+2}\)