Gọi \(O\)là giao điểm của \(AC\)và \(BD\).
Theo bất đẳng thức tam giác ta có:
\(OA+OB>AB\)
\(OC+OD>CD\)
\(\Rightarrow AB+CD< OA+OB+OC+OD=AC+BD\)
mà \(AB+BD\le AC+CD\)
suy ra \(2AB+CD+BD< 2AC+BD+CD\)
\(\Leftrightarrow AB< AC\).
Gọi \(O\)là giao điểm của \(AC\)và \(BD\).
Theo bất đẳng thức tam giác ta có:
\(OA+OB>AB\)
\(OC+OD>CD\)
\(\Rightarrow AB+CD< OA+OB+OC+OD=AC+BD\)
mà \(AB+BD\le AC+CD\)
suy ra \(2AB+CD+BD< 2AC+BD+CD\)
\(\Leftrightarrow AB< AC\).
Cho tứ giác ABCD có các cạnh và các đường chéo thoả mãn điều kiện: \(AB+BD\le AC+CD\)
Chứng minh AB<AC
Cho tứ giác ABCD có AB + BD \(_{^{ }\le}\) AC + CD. Chứng minh : AB < AC
1/ cho tứ giác lồi ABCD có B+D=180 độ, CB=CD. CMR AC là tia p/giác của góc BAD
2/ cho tứ giác lồi ABCD, hai cạnh AD và BC cắt nhau tại E, hai cạnh DC và AB cắt nhau tại F. Kẻ 2 p/giác của 2 góc CED và BFC cắt nhau tại I. Tính góc EIF theo các góc trong của tứ giác ABCD
3/ Cho tứ giác ABCD.
a) CMR 1/2 p < AC+BD < p (p là chu vi tứ giác)
b) C/M AB+CD < AC+BD
c) Biết chu vi tam giác ABD nhỏ hơn chu vi tam giác ACD, chứng minh AB<AC.
1) Cho tứ giác lồi ABCD có góc B + D= 180°, CB= CD. Chứng minh AC là tia phân giác góc BAD
2) Tứ giác ABCD có AC là tia phân giác góc A, BC= CD, AB<AD
a) Lấy điểm E trên cạnh AD sao cho AE= AB. Chứng minh rằng góc ABC= AEC
b) Chứng minh góc B+ D= 180°
Cho tứ giác ABCD có AC=BD và AC vuông goác BD , Gọi M , N, Q lần lượt là trung điểm của các cạnh AB , BC , CD , DA . Chứng minh rằng tứ giác MNPQ là hình vuông
Cho tứ giác ABCD có AC=BD và AC vuông goác BD , Gọi M , N, Q lần lượt là trung điểm của các cạnh AB , BC , CD , DA . Chứng minh rằng tứ giác MNPQ là hình vuông
Cho tứ giác ABCD có AC=BD và AC vuông goác BD , Gọi M , N, Q lần lượt là trung điểm của các cạnh AB , BC , CD , DA . Chứng minh rằng tứ giác MNPQ là hình vuông
1. Cho hình thang ABCD có góc A = góc D = 90 độ , đáy nhỏ AB = a , cạnh bên BC = 2 a . Gọi M , N lần lượt là trung điểm AD , AB
a / Tính số đo các góc ABC , BAN
b/ Chứng minh tam giác NAD đều
c/ Tính MN theo a
2. a/ Tính các góc A , góc B của hình thang ABCD ( AB // CD ) biết góc C = 70 độ , góc D = 40 độ
b/ Cho hình thang ABCD có AB // CD và góc A = góc D . Chứng minh rằng ABCD là hình thang vuông cà AC^2 + BD^2 = AB^2 + CD^2 + 2AD^2
3. Cho tứ giác ABCD :
a/ Chứng minh rằng AB + CD < AC + BD
b/ Cho biết AB + BD < hoặc = AC + CD
Chứng minh rằng AB < AC
4. Cho hình thang ABCD có AC vuông góc BD . CHứng minh rằng :
a/ AB^2 + CD^2 = AD^2 + BC^2
b/ ( AB + CD )^2 = AC^2 + BD^2
Cho tứ giác ABCD có các cạnh đối AB=CD. Gọi P, Q là các trung điểm của AC và BD. Chứng minh rằng: PQ lập (tạo) với các đường thẳng AB và CD các góc bằng nhau.